Nyquist Reference M anual

Version 2.36

Copyright 2007 by Roger B. Dannenberg
5 March 2007

Carnegie Mellon University
School of Computer Science
Pittsburgh, PA 15213, U.S.A.

PREFACE Pageiii

Preface

This manual is a guide for users of Nyquist, a language for composition and sound synthesis. Nyquist
grew out of a series of research projects, notably the languages Arctic and Canon. Along with Nyquist,
these languages promote a functional style of programming and incorporate time into the language
semantics.

Please help by noting any errors, omissions, or suggestions you may have. You can send your
suggestions to Dannenberg@CS.CMU.EDU (internet) via computer mail, or by campus mail to Roger
B. Dannenberg, School of Computer Science, or by ordinary mail to Roger B. Dannenberg, School of
Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213-3890, USA.

Nyquist is a successor to Fugue, a language originally implemented by Chris Fraley, and extended by
George Polly and Roger Dannenberg. Peter Velikonja and Dean Rubine were early users, and they
proved the value as well as discovered some early problems of the system. This led to Nyquist, a
reimplementation of Fugue by Roger Dannenberg with help from Joe Newcomer and Cliff Mercer. Ning
Hu ported Zheng (Geoffrey) Hua and Jim Beauchamp’s piano synthesizer to Nyquist and also built
NyqIDE, the Nyquist Interactive Development Environment for Windows. Dave Mowatt contributed the
original version of jNyqgIDE, the cross-platform interactive development environment. Dominic Mazzoni
made a special version of Nyquist that runs within the Audacity audio editor, giving Nyquist a new
interface and introducing Nyquist to many new users.

Many others have since contributed to Nyquist. Chris Tchou and Morgan Green worked on the
Windows port. Eli Brandt contributed a number of filters and other synthesis functions. Pedro J. Morales,
Eduardo Reck Miranda, Ann Lewis, and Erich Neuwirth have all contributed nyquist examples found in
the demos folder of the Nyquist distribution. Philip Yam ported some synthesis functions from Perry
Cook and Gary Scavone's STK to Nyquist. Dave Borel wrote the Dolby Pro-Logic encoding library and
Adam Hartman wrote stereo and spatialization effects. Stephen Mangiat wrote the MiniMoog emulator.
The Xmusic library, particularly the pattern specification, was inspired by Rick Taube's Common Music.
The functions for generating probability distributions were implemented by Andreas Pfenning.

Many others have made contributions, offered suggestions, and found bugs. If you were expecting to
find your name here, | apologize for the omission, and please let me know.

| also wish to acknowledge support from CMU, Y amaha, and IBM for this work.

Page iv NY QUIST MANUAL

INTRODUCTION AND OVERVIEW Page 1

1. Introduction and Overview

Nyquist is alanguage for sound synthesis and music composition. Unlike score languages that tend to
deal only with events, or signal processing languages that tend to deal only with signals and synthesis,
Nyquist handles both in a single integrated system. Nyquist is also flexible and easy to use because it is
based on an interactive Lisp interpreter.

With Nyquist, you can design instruments by combining functions (much as you would using the
orchestra languages of Music V, cmusic, or Csound). You can call upon these instruments and generate a
sound just by typing a simple expression. You can combine simple expressions into complex ones to
create awhole composition.

Nyquist runs under any Unix environment, MacOS, Windows 95, and Windows NT, and it produces
sound files as output (or direct audio output under Windows). Under Unix, if you can play a sound file by
typing a command to a Unix shell, then you can get Nyquist to play sounds for you. Nyquist is currently
configured to run on an IBM RS6000 with an ACPA audio board, or a NeXT machine, using the built-in
sound system to play Nyquist output. Recent versions have also run on SGI, DEC pmax, Linux, and Sun
Sparc machines, and makefiles for these are included. Let me know if you have problems with any of
these machines.

To use Nyquist, you should have a basic knowledge of Lisp. An excellent text by Touretzky is
recommended [Touretzky 84]. Appendix 1V is the reference manual for XLISP, of which Nyquist is a
superset.

1.1. Installation
Nyquist is a C program intended to run under various operating systems including Unix, MacOS, and
Windows.

1.1.1. Unix Installation
For Unix systems, Nyquist is distributed as a compressed tar file named nyqui st 2nn. zi p, where nn

is the version number (eg. v2.19 was nyqui st219. zi p). To install Nyquist, copy
nyqui st 2nn. zi p to afresh directory on your machine and type:

gunzi p nyqui st 2nn. zi p

In -s sys/unix/linux/ Makefile Makefile

setenv XLI SPPATH ‘pwd‘/runtinme: ‘pwd'/lib

make
The first line creates anyqui st directory and some subdirectories. The second line makes a link from
the top-level directory to the Makefile for your system. In place of Iinux in
sys/ uni x/ | i nux/ Makefi | e, you should substitute your system type. Current systems are next ,
pmax, rs6k, sgi, |l i nux, and sparc. The set env command tells Nyquist where to search for lisp
files to be loaded when afileis not found in the current directory. Ther unt i me directory should always
be on your XLI SPPATH when you run Nyquist, so you may want to set XLI SPPATH in your shell
startup file, e.g. . cshr c. Assuming the make completes successfully, you can run Nyquist as follows:

.I'ny

When you get the prompt, you may begin typing expressions such as the ones in the following
“‘Examples’’ section.

Page 2 NYQUIST MANUAL

One you establish that Nyquist (ny) is working from the command line, you should try using jNyqlDE,
the Java-based Nyquist development environment. First, make j ny executable (do this only once when
you install Nyquist):

chmod +x jny
Then try running jNyql DE by typing:

.jny
If the jNyqglDE window does not appear, make sure you have Javainstalled (if not, you probably already
encountered errors when you ran make). Y ou can also try recompiling the Javafiles:

cd jnyqgi de
javac *.java
cd ..

Note: With Linux and the Macintosh OS X, jNyqIDE defines the environment passed to Nyquist. If
you set XLI SPPATH as shown above, it will be ignored under jNyqIDE. Instead, the XLISPPATH will
havethel i b and r unt i e directories only. This does not apply to Windows because even though the
environment is there, the Windows version of Nyquist reads the XLI SPPATH from the Registry.

Y ou can specify additional directories for the search path by creating the file nyqui st/ xI i sppat h,
which should have colon-separated paths on a single line of text.

Note: Nyquist looks for thefilei ni t . | sp inthe current directory. If youlook intheinit.|spin
runtime, you will notice two things. First, init.| sp loads nyqui st. | sp from the Nyquist
directory, and second, i ni t . | sp loadssyst em | sp which in turn defines the macro pl ay. You may
have to modify syst em | sp to invoke the right programs on your machine.

1.1.2. Win32 Installation

The Win32 version of Nyquist is packaged in three versions. the source version and two runtime
versions. The source version is a superset of the runtime version intended for developers who want to
recompile Nyquist. The source version existsasa . zi p file, so you need a utility like WinZip to unpack
them. The URL http://ww. wi nzi p. coml has information on this product. Typicaly, the
contents of the zip file are extracted to the C: \ nyqui st directory, but you can put it anywhere you like.
Y ou can then open the workspace file, nyquist.dsw, using Microsoft Visual C++. You can build and run
the command line and the NygWin versions of Nyquist from within Visual C++.

The runtime versions contain everything you need to run Nyquist, including the executable, examples,
and documentation. Each runtime version is packaged as an executable installer program. | recommend
set upnyqi derun2xx. exe (‘‘2xx’’ refers to the current version number), a graphical interface
written in Java that runs nyquist.exe as a separate process. This IDE has a simple lisp editor built in.
Alternatively, you can install set upnygwi nrun2xx. exe, a different graphical interface written in
C++, Just copy the installer you want to your system and run it. Then find Nyquist in your Start menu to
runit. You may begin typing expressions such as the onesin the following ‘‘ Examples’ section.

Optional: Nyquist needs to know where to find the standard runtime files. The location of runtime files
must be stored in the Registry. The installers create aregistry entry, but if you move Nyquist or deal with
different versions, you can edit the Registry manually as follows:

* Run the Registry editor. Under Windows NT, run
C.\ W NNT\ syst enB2\ r egedt 32. exe. Under Windows95, run

INTRODUCTION AND OVERVIEW Page 3

C.\ W NDOWE\ r egedi t . exe.
* Find and highlight the SOFTWARE key under HKEY_LOCAL_ MACHI NE.
» Choose Add key ... fromthe Edi t menu, type CMJ, and click the OK button.
* Highlight the new CMUJ key.

» Choose Add key ... from the Edi t menu, type Nyqui st, and click the OK button.
(Notethat CMJand Nyqui st are case sensitive.)

 Highlight the new Nyqui st key.

e Choose Add val ue ... from the Edit menu, type XLI SPPATH, and click the OK
button. (Under WinXP the menu item is Edi t : New. St ri ng Val ue, after which you
need to select the new string name that appears in the right panel, select Edi t : Renane, and
type XLI SPPATH.)

* In the String Edit box (select the Edi t : Modi f y menu item in WinXP), type a list of paths
you want Nyquist to search for lisp files. For example, if you installed Nyquist as
C.\ nyqui st , then type:

C.\nyqui st\runtine, C\nyquist\lib
The paths should be separated by a comma or semicolon and no space. Ther unt i e pathis
essential, and the | i b path may become essential in a future release. Y ou can also add paths
to personal libraries of Lisp and Nyquist code.

* Click the OK button of the string box and exit from the Registry Editor application.

1.1.2.1. What if Nyquist functions are undefined?

If you do not have administrative privileges for your machine, the installer may fail to set up the
Registry entry that Nyquist uses to find initialization files. In this case, Nyquist will run alisp interpreter,
but many Nyquist functions will not be defined. If you can log in as administrator, do it and reinstall
Nyquist. If you do not have permission, you can still run Nyquist as follows:

Create a file named i nit.| sp in the same directory as Nyquist.exe (the default location is
C.\ Program Fil es\ Nyqui st, but you may have installed it in some other location.) Put the
followingtextini nit. | sp:

(setf * search-path* "C:/Program Files/Nyquist/runtime,C:/Program Files/Nyquist/lib")

(load " C:/Program Files/Nyquist/runtime/init.Isp")
Note: in the three places where you see C. / Program Fi | es/ Nyqui st , insert the full path where
Nyquist is actualy installed. Use forward dlashes (/) rather than back slashes (\) to separate directories.
For example, if Nyquistisinstalled at D: \ r bd\ nyqui st , theni ni t. | sp should contain:

(setf *search-path* "D:/rbd/nyquist/runtime,D:/rbd/nyquist/lib™)

(load "d:/rbd/nyquist/runtime/init.Isp")
The variable * sear ch- pat h*, if defined, is used in place of the registry to determine search paths for
files.

1.1.2.2. SystemRoot

(Ignore this paragraph if you are not planning to use Open Sound Control under Windows.) If Nyquist
prints an error message and quits when you enable Open Sound Control (using osc- enabl e), check to
seeif you have an environment variable Syst enRoot , e.g. typeset to acommand prompt and look for
the value of Syst emRoot . The normal value is C. \ wi ndows. If the value is something else, you

Page 4 NY QUIST MANUAL

should put the environment entry, for example:
SystemRoot="D:\windows"

into a file named syst enr oot (no extension). Put thisfile in your nyqui st directory. When you run
j Nyql DE, it will look for this file and pass the contents as an environment variable to Nyquist. The
Nyquist process needs this to open a UDP socket, which is needed for Open Sound Control.

1.1.3. MacOS 9 Installation

The MacOS 9 version of Nyquist is no longer supported, but a old version till exists. The MacOS
version of Nyquist is packaged in two versions: the source version and the runtime version. The source
version is a superset of the runtime version. Both exist as self extracting archives, so you just need to
copy the archive file of your choice to your machine and double click on itsicon. You can extract the
archiveto any folder you like.

You will find Nyqui st inther unti e folder. Double click on it and you should see a text window
with some information that Nyquist has started and has loaded some files. You may begin typing
expressions such as the ones in the following section.

On the Macintosh, Nyquist automaticaly creates a file " System Pref erences: XLi sp
Pr ef er ences" with adefault search path for files. You can edit thisfile to add new locations, although
this should not be necessary for most uses.

1.1.4. MacOS X Installation

The OS X version of Nyquist is very similar to the Linux version, but it is developed using Xcode,
Appl€'s programming environment. With a little work, you can use the Linux installation instructions to
compile Nyquist, but it might be simpler to just open the Xcode project that is included in the Nyquist
sources.

You can aso download a pre-compiled version of Nyquist for the Mac. Just download
nyqosx2xx. t gz to the desktop and open it to extract the folder <tt>nygosx2xx</tt>. (Again, "2xx"
refers to the current version number, e.g. v2.31 would be named with "231".) Open the folder to find a
Mac Application named jNyglDE and a directory named <tt>nyquist/doc</tt>. Documentation is in the
<tt>nyquist/doc</tt> directory.

The file <tt>jNyqlDE.app/Contents/Resources/Java/ny</tt> is the command line executable (if you
should need it). To run from the command line, you will need to set the XLISPPATH environment
variable as with Linux. On the topic of the XLI SPPATH, note that this variable is set by jNyqIDE when
running with that application, overriding any other value. Y ou can extend the search path by creating the
file x| i sppat h in the same directory as the nyquist executable ny. The xI i sppat h file should have
colon-separated paths on asingle line of text.

1.2. Helpful Hints

Under Win95 and Win98, the console sometimes locks up. Activating another window and then
reactivating the Nyquist window should unlock the output. (We suggest you use JNyqIDE, the interactive
devel opment environment rather than a console window.)

INTRODUCTION AND OVERVIEW Page 5

You can cut and paste text into Nyquist, but for serious work, you will want to use the Lisp | oad
command. To save even more time, write a function to load your working file, e.g. (defun | ()
(load "nyfile.lsp")).Thenyoucantype(l) to(re)load your file.

Under Windows, if you encounter an error while loading afile, the file is left open, and you may not be
able to overwrite the file with a correction. To close the file, type (t op) to exit the debugger and
resume at the top level of the interpreter. Y ou may need to type (gc) to force a garbage collection. This
will free and close the file. Now you can modify the file with your text editor.

The Emacs editor is free GNU software and will help you balance parentheses if you use Lisp mode.
Also, the NygIDE and jNyqIDE versions have built-in lisp editors. If your editor does not help you
bal ance parentheses, you may find yourself counting parens and searching for unbalanced expressions. If
you are desparate, type (fi | e- sexprs) and type the lisp file name at the prompt. This function will
read and print expressions from the file, reporting an error when an extra paren or end-of-file is reached
unexpectedly. By looking at the last expression printed, you can at least tell where the unbalanced
expression starts. Alternatively, try the verbose mode of thel oad command.

1.3. Examples

We will begin with some simple Nyquist programs. Detailed explanations of the functions used in
these examples will be presented in later chapters, so at this point, you should just read these examples to
get a sense of how Nyquist is used and what it can do. The details will come later. Most of these
examples can be found inthefilenyqui st/ sndt est/tutorial . | sp.

Our first example makes and plays a sound:

;; Making a sound.

(play (osc 60)) ; generatealoud sinewave
This example is about the simplest way to create a sound with Nyquist. The osc function generates a
sound using a table-lookup oscillator. There are a number of optional parameters, but the default is to
compute a sinusoid with an amplitude of 1.0. The parameter 60 designates a pitch of middle C. (Pitch
specification will be described in greater detail later.) The result of the osc functionisasound. To hear
a sound, you must use the pl ay function, which under Unix writes the sound as a 16-bit sound file and
runs a Unix program that plays the file through the machine’'s D/A converters. On the Macintosh, you
have to explicitly play the file from another program, e.g. SoundApp, which is included in the Macintosh
release. Under Windows, Nyquist outputs audio directly. It also writes a soundfile in case the computation
cannot keep up with real time. Y ou can then (re)play the file by typing:

(r)
This(r) command isageneral command to ‘‘replay’’ the last thing written by pl ay.

Note: when Nyquist plays a sound, it scales the signal by 215-1 and (by default) converts to a 16-bit
integer format. A signa like (osc 60), which ranges from +1 to -1, will play as a full-scale 16-bit
audio signal. Signals are not normalized to full-scale, however, so an amplitude in excess of 1 will be
clipped. See Section 4.3 for information about normalization.

Page 6 NYQUIST MANUAL

1.3.1. Waveforms

Our next example will be presented in several steps. The goal is to create a sound using a wavetable
consisting of several harmonics as opposed to a simple sinusoid. In order to build a table, we will use a
function that computes a single harmonic and add harmonics to form a wavetable. An oscillator will be
used to compute the harmonics.

The function mkwave calls upon bui | d- har moni ¢ to generate a total of four harmonics with
amplitudes 1.0, 0.5, 0.25, and 0.12. These are scaled (using scal e) and added (using si n) to create a
waveform which is bound temporarily to * t abl e*.

A complete Nyquist waveform is a list consisting of a sound, a pitch, and T, indicating a periodic
waveform. The pitch gives the nominal pitch of the sound. (Thisisimplicit in asingle cycle wave table,
but a sampled sound may have many periods of the fundamental.) Pitch is expressed in half-steps, where
middle C is 60 steps, asin MIDI pitch numbers. The list of sound, pitch, and T isformed in the last line
of mkwave: since bui | d- har noni ¢ computes signals with a duration of one second, the fundamental
is1Hz, and thehz- t 0- st ep function converts to pitch (in units of steps) as required.

(defun nmkwave ()
(setf *table* (sim(scale 0.5 (build-harnmonic 1.0 2048))
(scale 0.25 (build-harnonic 2.0 2048))
(scale 0.125 (build-harnonic 3.0 2048))
(scale 0.062 (build-harnonic 4.0 2048))))
(setf *table* (list *table* (hz-to-step 1) T)))

Now that we have defined a function, the last step of this example is to build the wave. The following
code calls mkwav e the first time the code is executed (loaded from afile). The second time, the variable
nkwave will be true, so mkwave will not be invoked:

(cond ((not (boundp ’'*nkwave*))

(nmkwave)
(setf *nmkwave* t)))

1.3.2. Wavetables

When Nyquist starts, several waveforms are created and stored in global variables for convenience.
They are: *si ne-t abl e*, *sawtabl e*, and *tri -t abl e*, implementing sinusoid, sawtooth,
and triangle waves, respectively. The variable *t abl e* is initialized to *si ne-t abl e*, and it is
t abl e that forms the default wave table for many Nyquist oscillator behaviors. If you want a proper,
band-limited waveform, you should construct it yourself, but if you do not understand this sentence
and/or you do not mind abit of aliasing, give*saw-t abl e* and*tri -t abl e* atry.

Note that in Lisp, global variables often start and end with asterisks (*). These are not specia syntax,

they just happen to be legal characters for names, and their useis purely a convention.

1.3.3. Sequences
Finally, we define not e to use the waveform, and play several notesin asimple score:

INTRODUCTION AND OVERVIEW Page 7

(defun note (pitch dur)
(osc pitch dur *table*))

(play (seq (note c4 i)

(note d4 i)
(note f4 i)
(note g4 i)

(note d4 q)))

Here, not e is defined to take pitch and duration as parameters; it calls osc to do the work of generating
awaveform, using *t abl e* asawavetable.

The seq function is used to invoke a sequence of behaviors. Each note is started at the time the
previous note finishes. The parametersto not e are predefined in Nyquist: c4 ismiddle C, i (for elghth
note) is 0.5, and g (for Quarter note) is 1.0. See Section 1.4 for a complete description. The result is the
sum of all the computed sounds.

Sequences can also be constructed using the at transformation to specify time offsets. See
sequence_exanpl e. ht nrdenps, sequence for more examples and explanation.

1.3.4. Envelopes

The next example will illustrate the use of envelopes. In Nyquist, envelopes are just ordinary sounds
(although they normaly have a low sample rate). An envelope is applied to ancther sound by
multiplication using the mul t function. The code shows the definition of env- not e, defined in terms
of the not e function in the previous example. In env- not e, a4-phase envelope is generated using the
env function, which isillustrated in Figure 1.

(env t1t2t4111213 dur)
L1

L2
L3
t1 t2 t4

<

dur

Figure 1: An envelope generated by the env function.

Page 8 NYQUIST MANUAL

; env-note produces an enveloped note. The duration
; defaultsto 1.0, but stretch can be used to change
; theduration.

’(defun env-note (p)
(mult (note p 1.0)
(env 0.05 0.1 0.5 1.0 0.5 0.4)))

; try it out:

(play (env-note c4))

While this example shows a smooth envelope multiplied by an audio signal, you can also use nul t to
multiply to audio signals to achieve what is often called ring modulation. See the code and description in
denps/ scratch_tutorial.htmfor an interesting use of ring modulation to create ‘‘scratch’
sounds.

In the next example, st r et ch is used to modify durations:
; now use stretch to play different durations

(pl ay
(seq (stretch 0.25
(seq (env-note c4)
(env-note d4)))
(stretch 0.5
(seq (env-note f4)
(env-note g4)))
(env-note c4)))

In addition to stretch, there are a number of transformations supported by Nyquist, and
transformations of abstract behaviors is perhaps the fundamental idea behind Nyquist. Chapter 2 is
devoted to explaining this concept, and further elaboration can be found elsewhere [Dannenberg 89].

1.3.5. Piece-wise Linear Functions

It is often convenient to construct signals in Nyquist using alist of (time, value) breakpoints which are
linearly interpolated to form a smooth signal. Envelopes created by env are a special case of the more
general piece-wise linear functions created by pwl . Since pwl is used in some examples later on, we
will take alook at pwl now. The pwl function takes a list of parameters which denote (time, value)
pairs. There is an implicit initial (time, value) pair of (0, 0), and an implicit final value of 0. There
should always be an odd number of parameters, since the final time is not implicit. Here are some
examples:

INTRODUCTION AND OVERVIEW Page 9

; symetric rise to 10 (at time 1) and fall back to O (at time 2):

(pwi 1 10 2)

; a sguare pulse of height 10 and duration 5.

; Note that the first pair (0, 10) overrides the default initial

; point of (0, 0). Also, there are two points specified at time 5:

; (5,10) and (5, 0). (Thelast Oisimplicit). Theconflictis

; automatically resolved by pushing the (5, 10) breakpoint back to
; the previous sample, so the actual time will be 5 - 1/sr, where

; or isthe samplerate.

(pwl 0 10 5 10 5)

; a constant function with the value zero over the time interval

; 0to 3.5. Thisisa very degenerate formof pwl. Recall that there
;isanimplicitinitial point at (O, 0) and a final implicit value of

; 0, so thisisreally specifying two breakpoints: (0, 0) and (3.5, 0):

(pwi 3.5)

; alinear ramp from O to 10 and duration 1.
; Note the ramp returnsto zero at time 1. Aswith the square pulse
; above, the breakpoint (1, 10) is pushed back to the previous sample.

(pw 1 10 1)

; If you really want a linear ramp to reach itsfinal value at the
; specified time, you need to make a signal that is one sample longer.
; The RAMP function does this:

’(ranmp 10) ; rampfrom O to 10 with duration 1 + one sample period

* RAMP is based on PWL; it is defined in nyquist.sp.

1.4. Predefined Constants
For convenience and readability, Nyquist pre-defines some constants, mostly based on the notation of
the Adagio score language, as follows:
» Dynamics Note: these dynamics values are subject to change.

| ppp =-12.0(dB)
| pp=-9.0

Il p=-6.0

I mp=-3.0

[nf =3.0

If =6.0

[ff =90
[fff =120
dB0 =1.00
dBl1 =1.122
dB10 =3.1623

e Durations

Page 10 NYQUIST MANUAL

s = Sixteenth = 0.25

i =elghth=0.5

g = Quarter = 1.0

h =Half =2.0

w=Whole=4.0

sd, id, qgd, hd, wd=dotteddurations.
st, it, qt, ht, wt =triplet durations.

* PitchesPitches are based on an A4 of 440Hz. To achieve a different tuning, set
* Ad- Her t z* to the desired frequency for A4, and call (set - pi t ch- nanes) . Thiswill
recompute the names listed below with a different tuning. In all cases, the pitch value 69.0
corresponds exactly to 440Hz, but fractional values are allowed, so for example, if you set
Ad- Her t z to 444 (Hz), then the symbol A4 will be bound to 69.1567, and C4 (middle
C), which is normally 60.0, will be 60.1567.

c0=120

cs0, df0=130

do0 =140

ds0, ef0=15.0
e0=16.0

f0=17.0

fsO, gf0=180

g0 =19.0

gs0, af0=20.0

a0 =21.0

as0, bf0=220

b0 =23.0
cl..bl=240..350
c2..b2=36.0..47.0
c3..b3=480..59.0
c4..b4=600..710
c5..b5=720..830
c6..b6=840..950
c7..b7=96.0...107.0
c8..b8=108.0...119.0

» Miscellaneous)
ny: al | =*al thesamples’ (i.e. abig number) = 1000000000

1.5. More Examples
More examples can be found in the directory denos, part of the standard Nyquist release. In this
directory, you will find the following and more:

» Gong sounds by additive synthesis(denos/ pnor al es/ bl. | sp and
denos/ mat eos/ gong. | sp

* Risset’s spectral analysis of achord (denos/ pnor al es/ b2. | sp)

* Bell sounds (denmos/ pnor al es/ b3. | sp, denos/ pnor al es/ e2. | sp,
denos/ pnor al es/ partial .| sp,anddenos/ mat eos/ bel | . | sp)

* Drum sounds by Risset (denos/ pnor al es/ b8. | sp
* Shepard tones (denos/ shepar d. | sp anddenos/ pnor al es/ b9. | sp)

* Random signals (denos/ pror al es/ cl. | sp)

INTRODUCTION AND OVERVIEW Page 11

» Buzz with formant filters (denos/ pnor al es/ buzz. | sp

e Computing samples directly in Lisp (using Karplus-Strong and physical modelling as
examples) (denos/ pror al es/ d1. 1 sp

* FM Synthesis examples, including bell, wood drum, brass sounds, tuba sound
(denos/ mat eos/ t uba. | sp and clarinet sounds (denos/ pror al es/ e2. 1 sp

* Rhythmic patterns (denos/ rhyt hm tutori al . ht m

Page 12 NYQUIST MANUAL

BEHAVIORAL ABSTRACTION Page 13

2. Behavioral Abstraction

In Nyquist, al functions are subject to transformations. Y ou can think of transformations as additional
parameters to every function, and functions are free to use these additional parametersin any way. The
set of transformation parameters is captured in what is referred to as the transformation environment.
(Note that the term environment is heavily overloaded in computer science. Thisis yet another usage of
the term.)

Behavioral abstraction is the ability of functions to adapt their behavior to the transformation
environment. This environment may contain certain abstract notions, such as loudness, stretching a sound
in time, etc. These notions will mean different things to different functions. For example, an oscillator
should produce more periods of oscillation in order to stretch its output. An envelope, on the other hand,
might only change the duration of the sustain portion of the envelope in order to stretch. Stretching a
sample could mean resampling it to change its duration by the appropriate amount.

Thus, transformations in Nyquist are not simply operations on signals. For example, if | want to stretch
anote, it does not make sense to compute the note first and then stretch the signal. Doing so would cause
adrop in the pitch. Instead, a transformation modifies the transformation environment in which the note
is computed. Think of transformations as making requests to functions. It is up to the function to carry
out the request. Since the function is always in complete contral, it is possible to perform transformations
with “‘intelligence;’’ that is, the function can perform an appropriate transformation, such as maintaining
the desired pitch and stretching only phase 3 of an envelope to obtain alonger note.

2.1. The Environment

The transformation environment consists of a set of special Lisp variables. These variables should not
be read directly and should never be set directly by the programmer. Instead, there are functions to read
them, and they are automatically set and restored by transformation operators, which will be described
below.

The transformation environment consists of the following elements. Although each element has a
‘‘standard interpretation,”’ the designer of an instrument or the composer of a complex behavior is free to
interpret the environment in any way. For example, a changein *1 oud* may change timbre more than
amplitude, and *t r anspose* may be ignored by percussion instruments:

war p Time transformation, including time shift, time stretch, and continuous time warp.
The value of *war p* is interpreted as a function from logical (local score) time to
physical (global real) time. Do not access *war p* directly. Instead, use
(l ocal -to-gl obal t) toconvert fromalogica (local) time to physical (global)
time. Most often, you will cal (| ocal -t o- gl obal 0). Severd transformation
operators operate on * war p*, including at , st r et ch, and war p.

| oud Loudness, expressed in decibels. The default (nominal) loudness is 0.0 dB (no
change). Do not access *| oud* directly. Instead, use (get - | oud) to get the
current value of *| oud* and either | oud or | oud- abs to modify it.

transpose Pitch transposition, expressed in semitones. (Default: 0.0). Do not access
t ranspose directly. Instead, use (get -t r anspose) to get the current value
of *transpose* andeithert r anspose ort r anspose- abs to modify it.

sust ai n The ‘‘sustain,”” ‘‘articulation,”” ‘‘duty factor,”” or amount by which to separate or
overlap sequential notes. For example, staccato might be expressed with a
sustai n of 0.5, while very legato playing might be expressed with a

Page 14 NY QUIST MANUAL

sustai n of 1.2. Specificaly, *sust ai n* stretches the duration of notes
(sustain) without affecting the inter-onset time (the rhythm). Do not access
sust ai n directly. Instead, use (get - sust ai n) to get the current value of
sust ai n and either sust ai n or sust ai n- abs to modify it.

start Start time of a clipping region. Note: unlike the previous elements of the
environment, *st art * has a precise interpretation: no sound should be generated
before* st art *. Thisisimplemented in all the low-level sound functions, so it can
generally be ignored. You can read *start* directly, but use extract or
extract - abs to modify it. Note 2: Due to some internal confusion between the
specified starting time and the actual starting time of a signal after clipping,
start™ isnot fully implemented.

stop Stop time of clipping region. By analogy to * st art *, no sound should be generated
after thistime. *start* and *st op* alow acomposer to preview a small section
of a work without computing it from beginning to end. You can read * st op*
directly, but use extract or extract-abs to modify it. Note: Due to some
internal confusion between the specified starting time and the actual starting time of a
signal after clipping, * st op* isnot fully implemented.

control -srate
Sample rate of control signals. This environment element provides the default sample
rate for control signals. Thereisno formal distinction between a control signal and an
audio signal. You can read *control-srate* directly, but use
control -srateorcontrol -srat e-abs to modify it.

sound- sr at e Sample rate of musical sounds. This environment element provides the default
sample rate for musical sounds. You can read * sound- sr at e* directly, but use
sound- sr at e or sound- sr at e- abs to modify it.

2.2. Sequential Behavior
Previous examples have shown the use of seq, the sequential behavior operator. We can now explain
se(interms of transformations. Consider the simple expression:
(play (seq (note c4 q) (note d4 i)))

Theideais to create the first note at time O, and to start the next note when the first one finishes. Thisis
al accomplished by manipulating the environment. In particular, * war p* is modified so that what is
locally time O for the second note is transformed, or warped, to the logical stop time of the first note.

One way to understand this in detail is to imagine how it might be executed: first, * war p* is set to an
initial value that has no effect ontime, and (not e c4 () isevaluated. A sound is returned and saved.
The sound has an ending time, which in this case will be 1. 0 because the duration g is1. 0. Thisending
time, 1. 0, isused to construct anew * war p* that has the effect of shifting time by 1.0. The second note
is evaluated, and will start at time 1. The sound that is returned is now added to the first sound to form a
composite sound, whose duration will be2. 0. *war p* isrestored to itsinitial value.

Notice that the semantics of seq can be expressed in terms of transformations. To generalize, the
operational rule for seq is. evaluate the first behavior according to the current * war p* . Evaluate each
successive behavior with * war p* modified to shift the new note's starting time to the ending time of the
previous behavior. Restore *war p* to its original value and return a sound which is the sum of the
results.

In the Nyquist implementation, audio samples are only computed when they are needed, and the second

BEHAVIORAL ABSTRACTION Page 15

part of the seq is not evaluated until the ending time (called the logica stop time) of the first part. Itis
till the case that when the second part is evaluated, it will see * war p* bound to the ending time of the
first part.

A language detail: Even though Nyquist defers evaluation of the second part of the seq, the expression
can reference variables according to ordinary Lisp scope rules. This is because the seq captures the
expression in aclosure, which retains all of the variable bindings.

2.3. Simultaneous Behavior
Another operator issi m which invokes multiple behaviors at the sametime. For example,
(play (scale 0.5 (sim(note c4 q) (note d4 i))))
will play both notes starting at the same time.

The operational rule for si mis: evaluate each behavior at the current * war p* and return the result.
The following section illustrates two concepts: first, a sound is not a behavior, and second, the si m
operator and and the at transformation can be used to place sounds in time.

2.4. Soundsvs. Behaviors
The following example loads a sound from afile in the current directory and storesitin a- snd:
: load a sound

’(setf a-snd (s-read "./deno-snd.snd" :srate 22050.0))
; play it
’(pl ay a-snd)

One might then be tempted to write the following:
(seq a-snd a-snd) ;WRONG!

Why is thiswrong? Recall that seq works by modifying * war p*, not by operating on sounds. So, seq
will proceed by evaluating a- snd with different values of * war p*. However, the result of evaluating
a- snd (aLisp variable) is always the same sound, regardless of the environment; in this case, the second
a- snd should start at time 0. O, just like the first. In this case, after the first sound ends, Nyquist is
unable to ‘‘back up’’ to time zero, so in fact, thiswill play two sounds in sequence, but that is a result of
an implementation detail rather than correct program execution. In fact, a future version of Nyquist might
(correctly) stop and report an error when it detects that the second sound in the sequence has a real start
time that is before the requested one.

How then do we obtain a sequence of two sounds properly? What we realy need here is a behavior
that transforms a given sound according to the current transformation environment. That job is performed
by cue. For example, the following will behave as expected, producing a sequence of two sounds:

(seq (cue a-snd) (cue a-snd))
This example is correct because the second expression will shift the sound stored in a- snd to start at the
end time of the first expression.

The lesson hereis very important: sounds are not behaviors! Behaviors are computations that generate
sounds according to the transformation environment. Once a sound has been generated, it can be stored,

Page 16 NYQUIST MANUAL

copied, added to other sounds, and used in many other operations, but sounds are not subject to
transformations. To transform a sound, use cue, sound, or cont r ol . The differences between these
operations are discussed later. For now, hereisa‘*‘cue sheet’’ style score that plays 4 copies of a- snd:

; use simand at to place soundsin time

(play (sim(at 0.0 (cue a-snd))
(at 0.7 (cue a-snd))
(at 1.0 (cue a-snd))
(at 1.2 (cue a-snd))))

2.5. The At Transformation

The second concept introduced by the previous example is the at operation, which shifts the * war p*
component of the environment. For example,

(at 0.7 (cue a-snd))

can be explained operationally as follows: modify *war p* by shifting it by 0. 7 and evaluate (cue
a- snd) . Return the resulting sound after restoring * war p* toitsorigina value. Notice how at isused
inside asi mconstruct to locate copies of a- snd intime. Thisisthe standard way to represent a note-list
or acue-sheet in Nyquist.

This also explains why sounds need to be cue’d in order to be shifted in time or arranged in sequence.
If this were not the case, then si mwould take all of its parameters (a set of sounds) and line them up to
start at the sametime. But (at 0.7 (cue a-snd)) isjust asound, so si mwould ‘‘undo’’ the
effect of at , making all of the sounds in the previous example start simultaneously, in spite of the at .
Since si mrespects the intrinsic starting times of sounds, a special operation, cue, is needed to create a
new sound with anew starting time.

2.6. Nested Transfor mations
Transformations can be combined using nested expressions. For example,

(sim (cue a-snd)
(loud 6.0 (at 3.0 (cue a-snd))))

scales the amplitude as well as shifts the second entrance of a- snd.

Transformations can also be applied to groups of behaviors:

(loud 6.0 (sim(at 0.0 (cue a-snd))
(at 0.7 (cue a-snd))))

2.7. Defining Behaviors

Groups of behaviors can be named using def un (we aready saw this in the definitions of not e and
not e- env). Here is another example of a behavior definition and its use. The definition has one
parameter:

BEHAVIORAL ABSTRACTION Page 17

(defun snds (dly)
(sim(at 0.0 (cue a-snd))
(at 0.7 (cue a-snd))
(at 1.0 (cue a-snd))
(at (+ 1.2 dly) (cue a-snd))))

(play (snds 0.1))
(play (loud 0.25 (stretch 0.9 (snds 0.3))))

In the last ling, snds is transformed: the transformations will apply to the cue behaviors within snds.
The | oud transformation will scale the sounds by 0. 25, and st r et ch will apply to the shift (at)
amounts 0. 0,0.7,1.0,and (+ 1.2 dly). The sounds themselves (copies of a- snd) will not be
stretched because cue never stretches sounds.

Section 5.3 describes the full set of transformations.

2.8. Sample Rates
The global environment contains * sound- sr at e* and *cont r ol - sr at e*, which determine the
sample rates of sounds and control signals. These can be overridden at any point by the transformations
sound- sr at e- abs and cont r ol - sr at e- abs; for example,
(sound-srate-abs 44100.0 (osc c4))

will compute atone using a44.1Khz sample rate.

As with other components of the environment, you should never change *sound- srate* or
control - srate directly with setf or evenl et. The global environment is determined by two
additional variables: * def aul t - sound- sr at e* and*def aul t - control - srate*. You canadd
lineslike the following to your i ni t . | sp file to change the default global environment:

(setf *default-sound-srate* 44100.0)
(setf *default-control-srate* 1102.5)

If you have aready started Nyquist and want to change the defaults, the following functions should be
used:

(set-control-srate 1102.5) (set-sound-srate 22050. 0)
These modify the default values and reinitialize the Nyquist environment.

Page 18 NYQUIST MANUAL

CONTINUOUS TRANSFORMATIONS AND TIME WARPS Page 19

3. Continuous Transformationsand Time War ps

Nyquist transformations were discussed in the previous chapter, but all of the examples used scalar
values. For example, we saw thel oud transformation used to change loudness by a fixed amount. What
if we want to specify a crescendo, where the loudness changes gradually over time?

It turns out that all transformations can accept signals as well as numbers, so transformations can be
continuous over time. This raises some interesting questions about how to interpret continuous
transformations. Should aloudness transformation apply to the internal details of a note or only affect the
initial loudness? It might seem unnatural for a decaying piano note to perform a crescendo. On the other
hand, a sustained trumpet sound should probably crescendo continuously. In the case of time warping
(tempo changes), it might be best for a drum roll to maintain a steady rate, a trill may or may not change
rates with tempo, and arun of sixteenth notes will surely change its rate.

These issues are complex, and Nyquist cannot hope to automatically do the right thing in all cases.
However, the concept of behavioral abstraction provides an elegant solution. Since transformations
merely modify the environment, behaviors are not forced to implement any particular style of
transformation. Nyquist is designed so that the default transformation is usually the right one, but it is
always possible to override the default transformation to achieve a particular effect.

3.1. Smple Transfor mations
The ‘“*simple”’ transformations affect some parameter, but have no effect on time itself. The simple
transformations that support continuously changing parameters are: sust ai n, | oud, andt r anspose.

As afirst example, Let us use t r anspose to create a chromatic scale. First define a sequence of
tones at a steady pitch: (defun tone-seq () (seqrep (i 16) (stretch 0.25 (osc-
note c4)))) Now define alinearly increasing ramp to serve as a transposition function: (def un
pitch-rise () (stretch 4.0 (scale 16 (ranp)))) This ramp has a duration of 4
seconds, and over that interval it rises from 0 to 16 (corresponding to the 16 semitones we want to
transpose). Now, pitch-ri se is used to transpose t one-seq: (defun chromatic-scal e
() (transpose (pitch-rise) (tone-seq)))

Similar transformations can be constructed to change the sustain or *‘duty factor’’ of notes and their
loudness. The following expression plays the previously constructed chromatic scale with increasing note
durations. The rhythm is unchanged, but the note length changes from staccato to legato: (sust ai n
(stretch 4 (sum 0.2 (ranp))) (chromatic-scal e)) The resulting sustain function will
ramp from 0.2to 1.2. A sustain of 1.2 denotes a 20 percent overlap between notes. The sumbhas a stretch
factor of 4, so it will extend over the 4 second duration of chr onat i c- scal e.

What do these transformations mean? How did the system know to produce a pitch rise rather than a
continuous glissando? This all relates to the idea of behaviora abstraction. It is possible to design
sounds that do glissando under the transpose transform, and you can even make sounds that ignore
transpose altogether. As explained in Chapter 2, the transformations modify the environment, and
behaviors can reference the environment to determine what signals to generate. All built-in functions,
such as osc, have adefault behavior.

The default behavior for sound primitives under t r anspose, sust ai n, and | oud transformationsis
to sample the environment at the beginning of the note. Transposition is not quantized to semitones or

Page 20 NYQUIST MANUAL

any other scale, but in our example, we arranged for the transposition to work out to integer numbers of
semitones, so we got a chromatic scale.

Transposition only applies to the oscillator and sampling primitivesosc, parti al , sanpl er, si ne,
f nosc, and anpbsc. Sustain applies to osc, env, and pw . (Note that anosc and f nosc get their
durations from the modulation signal, so they may indirectly depend upon the sustain.) Loud applies to
osc, sanpl er, cue, sound, f nbsc, and anosc. (But not pw or env.)

3.2. TimeWarps

The most interesting transformations have to do with transforming time itself. The warp
transformation provides a mapping function from logical (score) time to rea time. The slope of this
function tells us how many units of real time are covered by one unit of score time. Thisis proportional
to L/tempo. A higher slope corresponds to a slower tempo.

To demonstrate war p, we will define atime warp function using pw :
(defun warper ()
(pwd .25 .4 .75 .6 1.0 1.0 2.0 2.0 2.0))

This function has an initial slope of .4/.25 = 1.6. It may be easier to think in reciprocal terms: the initial
tempo is.25/.4 = .625. Between 0.25 and 0.75, the tempo is.5/.2 = 2.5, and from 0.75 to 1.0, thetempo is
again .625. It is important for warp functions to completely span the interval of interest (in our case it
will be0to 1), and it is safest to extend a bit beyond the interval, so we extend the function on to 2.0 with
atempo of 1.0. Next, we stretch and scale the war per function to cover 4 seconds of score time and 4
seconds of real time:

(defun warp4 () (stretch 4 (scale 4 (warper))))

Figure 2 shows a plot of this warp function. Now, we can warp the tempo of thet one- seq defined
above usingwar p4:

(play (warp (warp4) (tone-seq)))
Figure 3 shows the result graphically. Notice that the durations of the tones are warped as well as their
onsets. Envelopes are not shown in detail in the figure. Because of the way env is defined, the tones
will have constant attack and decay times, and the sustain will be adjusted to fit the available time.

3.3. Abstract TimeWar ps

We have seen a number of examples where the default behavior did the ‘*right thing,”” making the code
straightforward. This is not always the case. Suppose we want to warp the note onsets but not the
durations. We will first look at an incorrect solution and discuss the error. Then we will look at adightly
more complex (but correct) solution.

The default behavior for most Nyquist built-in functions is to sample the time warp function at the
nominal starting and ending score times of the primitive. For many built-in functions, including osc, the
starting logical time is 0 and the ending logical timeis 1, so the time warp function is evaluated at these
points to yield real starting and stopping times, say 15.23 and 16.79. The difference (e.g. 1.56) becomes
the signal duration, and there is no internal time warping. The pwl function behaves a little differently.
Here, each breakpoint is warped individually, but the resulting function is linear between the breakpoints.

A consequence of the default behavior is that notes stretch when the tempo slows down. Returning to

CONTINUOUS TRANSFORMATIONS AND TIME WARPS Page 21

Figure2: The result of (war p4), intended to map 4 seconds of score time into 4
seconds of real time. The function extends beyond 4 seconds (the dashed lines) to make
sure the function is well-defined at location (4, 4). Nyquist sounds are ordinarily open
on theright.

Figure3: When (war p4) isappliedto (t one- seq- 2), the note onsets and durations
are warped.

our example, recall that we want to warp only the note onset times and not the duration. One would think
that the following would work:

(defun tone-seq-2 ()
(seqrep (i 16)
(stretch-abs 0.25 (osc-note c4))))

(play (warp (warp4) (tone-seg-2)))
Here, we have redefined t one- seq, renaming it to t one- seq- 2 and changing the stretch to
stretch-abs. Thestret ch-abs should override the warp function and produce a fixed duration.

Page 22 NYQUIST MANUAL

If you play the example, you will hear steady sixteenths and no tempo changes. What iswrong? In a
sense, the *‘fix’” works too well. Recall that sequences (including seqr ep) determine the starting time
of the next note from the logical stop time of the previous sound in the sequence. When we forced the
stretch to 0.25, we also forced the logical stop timeto 0.25 real seconds from the beginning, so every note
starts 0.25 seconds after the previous one, resulting in a constant tempo.

Now let us design a proper solution. The trick is to use st r et ch- abs as before to control the
duration, but to restore the logical stop time to avalue that results in the proper inter-onset time interval:

(defun tone-seq-3 ()
(seqrep (i 16)
(set-1ogical -stop
(stretch-abs 0.25 (osc-note c4))
0.25)))

(play (warp (warp4) (tone-seq-3)))
Notice the addition of set - | ogi cal - st op enclosing the st r et ch- abs expression to set the logical
stop time. A possible point of confusion here is that the logical stop time is set to 0.25, the same number
given to st ret ch- abs! How does setting the logical stop time to 0.25 result in a tempo change?
When used within awar p transformation, the second argument to set - | ogi cal - st op refersto score
time rather than real time. Therefore, the score duration of 0.25 is warped into real time, producing
tempo changes according to the enviroment. Figure 4 illustrates the result graphically.

> D D D > B> B D

Figure4: When (war p4) isapplied to (t one- seq- 3), the note onsets are warped,
but not the duration, which remains a constant 0.25 seconds. In the fast middle section,
this causes notesto overlap. Nyquist will sum (mix) them.

3.4. Nested Transformations
Transformations can be nested. In particular, a simple transformation such as transpose can be nested
within a time warp transformation. Suppose we want to warp our chromatic scale example with the

war p4 time warp function. As in the previous section, we will show an erroneous simple solution
followed by a correct one.

The simplest approach to a nested transformation is to smply combine them and hope for the best:

(play (warp (warp4) , ,
(transpose (pitch-rise) (tone-seq))))

This example will not work the way you might expect. Here is why: the warp transformation applies to

CONTINUOUS TRANSFORMATIONS AND TIME WARPS Page 23

the (pi tch-ri se) expression, which is implemented using the r anp function. The default behavior
of r anp isto interpolate linearly (in real time) between two points. Thus, the ‘*warped’’ r anp function
will not truly reflect the internal details of the intended time warp. What we need is a way to properly
compose the warp and ramp functions. Thiswill lead to a correct solution.

Here is the modified code to properly warp a transposed sequence. Note that the original sequence is
used without modification. The only complication is producing a properly warped transposition function:
(play (warp (warp4)
(transpose
(control -warp (get-warp)
(war p-abs nil (pitch-rise)))

(tone-seq))))
To properly warp the pi t ch-ri se transposition function, we use cont r ol - war p, which applies a
warp function to a function of score time, yielding a function of real time. We need to pass the warp
desired function to cont r ol - war p, so we fetch it from the environment ith (get - war p) . Finally,
since the warping is done here, we want to shield the pi t ch- ri se expression from further warping, so
weencloseitin(war p-abs nil ...).

An aside: This last example illustrates a difficulty in the design of Nyquist. To support behavioral
abstraction universally, we must rely upon behaviorsto *“do the right thing.”” In this case, we would like
the ranp function to warp continuously according to the environment. But this is inefficient and
unnecessary in many other cases where r anp and especially pw are used. (pw warps its breakpoints,
but il interpolates linearly between them.) Also, if the default behavior of primitives is to warp in a
continuous manner, this makes it difficult to build custom abstract behaviors. The final voteisnot in.

Page 24 NYQUIST MANUAL

MORE EXAMPLES Page 25

4. More Examples
This chapter explores Nyquist through additional examples. The reader may wish to browse through
these and move on to Chapter 5, which is areference section describing Nyquist functions.

4.1. Stretching Sampled Sounds

This example illustrates how to stretch a sound, resampling it in the process. Because sounds in
Nyquist are values that contain the sample rate, start time, etc., use sound to convert a sound into a
behavior that can be stretched, e.g. (sound a- snd) . This behavior stretches a sound according to the
stretch factor in the environment, set using st r et ch. For accuracy and efficiency, Nyquist does not
resample a stretched sound until absolutely necessary. The f or ce- sr at e function is used to resample
the result so that we end up with a“‘‘normal’’ sample rate that is playable on ordinary sound cards.

; if a-snd is not loaded, load sound sample:

(if (not (boundp ’a-snd))
(setf a-snd
(s-read "deno-snd.nh" :srate 22050.0)))

; the SOUND operator shifts, stretches, clips and scales
; a sound according to the current environment

(play (force-srate *default-sound-srate*
(stretch 3.0 (sound a-snd))))

(defun down ()
(force-srate *default-sound-srate*
(seq (stretch 0.2 (sound a-snd))
(stretch 0.3 (sound a-snd))
(stretch 0.4 (sound a-snd))
(stretch 0.5 (sound a-snd))
(stretch 0.6 (sound a-snd)))))

(play (down))

; that was so much fun, let’s go back up:

(defun up ()
(force-srate *default-sound-srate*
(seq (stretch 0.5 (sound a-snd))
(stretch 0.4 (sound a-snd))
(stretch 0.3 (sound a-snd))
(stretch 0.2 (sound a-snd)))))

; and write a sequence

(play (seq (down) (up) (down)))

Notice the use of the sound behavior as opposed to cue. The cue behavior shifts and scales its
sound according to *war p* and *| oud*, but it does not change the duration or resample the sound. In
contrast, sound not only shifts and scales its sound, but it also stretches it by resampling or changing the
effective sample rate according to * war p*. If *war p* is a continuous warping function, then the sound
will be stretched by time-varying amounts. (The *t r anspose* element of the environment is ignored
by both cue and sound.)

Page 26 NYQUIST MANUAL

Note: sound may use linear interpolation rather than a high-quality resampling algorithm. In some
cases, this may introduce errors audible as noise. Use r esanpl e (see Section 5.2.2) for high-quality
interpolation.

In the functions up and down, the *war p* is set by stret ch, which simply scales time by a
constant scale factor. In this case, sound can ‘‘stretch’’ the signal simply by changing the sample rate
without any further computation. When seq tries to add the signals together, it discovers the sample rates
do not match and uses linear interpolation to adjust all sample rates to match that of the first sound in the
sequence. The result of seq is then converted using f or ce- sr at e to convert the sample rate, again
using linear interpolation. It would be dightly better, from a computational standpoint, to apply
f or ce- sr at e individually to each stretched sound rather than applying f or ce- sr at e after seq.

Notice that the overall duration of (stretch 0.5 (sound a-snd)) will be half the duration of
a- snd.

4.2. Saving Sound Files

So far, we have used the pl ay function to play asound. The pl ay function works by writing a sound
to afile and then running a system program to play the file. This can be done one step at atime, and it is
often convenient to save a sound to a particular file for later use;

; writethe sampleto afile,

; thefile name can be any Unix filename. Prependinga"./" tells
; S-saveto not prepend * default-sf-dir*

1(s- save a-snd 1000000000 "./a-snd-file.snd")

; play afile

; (only works if you have a Unix program called "play")
(system "play a-snd-file.snd")

; delete the file (do thiswith care!)

’(syst em"rma-snd-file.snd")

; now let’sdo it using a variable as the file name

’(setf nmy-sound-file "./a-snd-file.snd")
(s-save a-snd 1000000000 ny-sound-file)
(system (strcat "play " ny-sound-file))

(system (strcat "rm" ny-sound-file))

This example shows how s- save can be used to save a sound to afile.

This example also shows how the syst emfunction can be used to invoke Unix shell commands, such
as a command to play a file or remove it. Finally, notice that st r cat can be used to concatenate a
command name to a file name to create a complete command that is then passed to syst em (Thisis
convenient if the sound file nameis stored in a parameter or variable.)

MORE EXAMPLES Page 27

Instead of using sy st em you should generally use pl ay- fi | e if you just want to play afile, e.g.

; play a sound file, works on any operating system
(play-file "./a-snd-file.snd")

; play the file whose name is the value of a variable:
(play-file my-sound-file)

4.3. Memory Space and Normalization

Sound samples take up lots of memory, and often, there is not enough primary (RAM) memory to hold
a complete composition. For this reason, Nyquist can compute sounds incrementally, saving the final
result on disk. However, Nyquist can also save sounds in memory so that they can be reused efficiently.
In generad, if asound is saved in a global variable, memory will be allocated as heeded to save and reuse
it.

The standard way to compute a sound and write it to disk is to pass an expression to the pl ay
command:

(play (my-conposition))

Often it is nice to normalize sounds so that they use the full available dynamic range of 16 bits.
Nyquist has an automated facility to help with normalization. By default, Nyquist computes up to 1
million samples (using about 4MB of memory) looking for the peak. The entire sound is normalized so
that this peak will not cause clipping. If the sound has less than 1 million samples, or if the first million
samples are agood indication of the overall peak, then the signal will not clip.

With this automated normalization technique, you can choose the desired peask value by setting
aut onormtarget, which is initidized to 09. The number of samples examined is
aut onor m max- sanpl es, initially 1 million. Y ou can turn this feature off by executing:

(aut onornt of f)
and turn it back on by typing:
(aut onor nm on)

This normalization technique is in effect when *aut onor mt ype* is’ | ookahead, which is the
default.

An alternative normalization method uses the peak value from the previous call to pl ay. After playing
a file, Nyquist can adjust an internal scale factor so that if you play the same file again, the peak
amplitude will be * aut onor mt t ar get *, which is initialized to 0.9. This can be useful if you want to
carefully normalize a big sound that does not have its peak near the beginning. To select this style of
normalization, set * aut onor m t ype* to the quoted atom’ pr evi ous.

You can aso create your own normalization method in Nyquist. The peak function computes the
maximum value of asound. The peak value is also returned from the pl ay macro. Y ou can normalize in
memory if you have enough memory; otherwise you can compute the sound twice. The two techniques
areillustrated here:

Page 28 NYQUIST MANUAL

; hormalizein memory. First, assign the sound to a variable so

it will be retained:

(setf nysound (sim (osc c4) (osc cb)))

; now compute the maximum value (ny:all is 1 giga-samples, you may want a
; smaller constant if you have less than 4GB of memory:

(setf nymax (peak mysound NY: ALL))

(di splay "Conmputed max" nynmax)

; now write out and play the sound from memory with a scale factor:

(play (scale (/ 1.0 nymax) nysound))

; if you don't have space in memory, here' s how to do it:

(defun nyscore () (sim(osc c4) (osc cbH)))

; compute the maxi mum:

(setf nymax (peak (myscore) NY:ALL))

(di splay "Conputed nmax" mymax)

; now we know the max, but we don’'t have a the sound (it was garbage

; collected and never existed all at once in memory). Compute the sound
; again, this time with a scale factor:

(play (scale (/ 1.0 mymax) (nyscore)))

You can aso write a sound as a floating point file. This file can then be converted to 16-bit integer
with the proper scaling applied. If along computation was involved, it should be much faster to scale the
saved sound file than to recompute the sound from scratch. Although not implemented yet in Nyquist,
some header formats can store maximum amplitudes, and some soundfile player programs can rescale
floating point files on the fly, allowing normalized soundfile playback without an extra normalization
pass (but at a cost of twice the disk space of 16-bit samples). You can use Nyquist to rescale a floating
point file and convert it to 16-bit samples for playback.

4.4. Frequency M odulation
The next example uses the Nyquist frequency modulation behavior f nosc to generate various sounds.
The parametersto f nosc are:
(f nosc pitch modulator table phase)
Note that pitch is the number of half-steps, e.g. c4 has the value of 60 which is middle-C, and phaseisin
degrees. Only thefirst two parameters are required:
; make a short sine tone with no frequency modulation

’(pl ay (fnosc c4 (pw 0.1)))

; make a longer sine tone -- note that the duration of
: the modulator determines the duration of the tone

’(pI ay (fnosc c4 (pw 0.5)))

In the example above, pwl (for Piece-Wise Linear) is used to generate sounds that are zero for the
durations of 0. 1 and 0. 5 seconds, respectively. In effect, we are using an FM oscillator with no
modulation input, and the result isa sine tone. The duration of the modulation determines the duration of
the generated tone (when the modulation signal ends, the oscillator stops).

The next example uses a more interesting modulation function, a ramp from zero to C,, expressed in
hz. More explanation of pwl isin order. This operation constructs a piece-wise linear function sampled
atthe*control -srate*. Thefirst breskpoint isalwaysat (0, 0), sothefirst two parameters give
the time and value of the second breakpoint, the second two parameters give the time and value of the

MORE EXAMPLES Page 29

third breakpoint, and so on. The last breakpoint has a value of 0, so only the time of the last breakpoint is
given. In this case, we want the ramp to end at C,, so we cheat a bit by having the ramp return to zero
“‘almogt’’ instantaneously between times0. 5 and 0. 501.

The pwl behavior always expects an odd humber of parameters. The resulting function is shifted and
stretched linearly according to * war p* in the environment. Now, here is the example:
; make a frequency sweep of one octave; the piece-wise linear function

; sweeps from 0 to (step-to-hz c4) because, when added to the ¢4
; fundamental, thiswill double the frequency and cause an octave sweep.

(play (fnosc c4 (pw 0.5 (step-to-hz c4) 0.501)))

The same idea can be applied to a non-sinusoidal carrier. Here, we assume that *f m voi ce* is
predefined (the next section shows how to define it):

; do the same thing with a non-sine table

1(p| ay (fnosc cs2 (pw 0.5 (step-to-hz cs2) 0.501)
fmvoi ce 0.0))

The next example shows how a function can be used to make a special frequency modulation contour.
In this case the contour generates a sweep from a starting pitch to a destination pitch:

; make a function to give a frequency sweep, starting

; after <delay> seconds, then sweeping from <pitch-1>
; to <pitch-2> in <sweep-time> seconds and then

; holding at <pitch-2> for <hold-time> seconds.

(defun sweep (delay pitch-1 sweep-tine pitch-2 hold-tine)
(let ((interval (- (step-to-hz pitch-2)
(step-to-hz pitch-1))))
(pwW delay 0.0
; sweep from pitch 1 to pitch 2
(+ delay sweep-tine) interval
; hold until about 1 sample from the end
(+ delay sweep-time hold-tine -0.0005) interval
; quickly ramp to zero (pwl always does this,
;S0 make it short)
(+ delay sweep-time hold-tine))))

; now try it out

’(pI ay (fnosc cs2 (sweep 0.1 cs2 0.6 gs2 0.5)
fmvoice 0.0))

FM can be used for vibrato as well as frequency sweeps. Here, we use the | f o function to generate
vibrato. The | f 0 operation is similar to osc, except it generates sounds at the *contr ol - srat e*,
and the parameter is hz rather than a pitch:

(play (fnosc cs2 (scale 10.0 (Ifo 6.0))
fmvoice 0.0))

What kind of manual would this be without the obligatory FM sound? Here, a sinusoidal modulator
(frequency C,) is multiplied by a slowly increasing ramp from zero to 1000. 0.

Page 30 NYQUIST MANUAL

(setf nodulator (nmult (pw 1.0 1000.0 1.0005)
(osc c4)))

: make the sound
(play (fnobsc c4 nodul ator))

For more simple examples of FM in Nyquist, see denos/ war bl e_tutori al . ht m Another
interesting FM sound reminiscent of ‘‘scratching’’ can be found with a detailed explanation in
denos/scratch _tutorial.htm.

4.5. Building a Wavetable

In Section 1.3.1, we saw how to synthesize a wavetable. A wavetable for osc aso can be extracted
from any sound. Thisis especialy interesting if the sound is digitized from some external sound source
and loaded using the s- r ead function. Recall that atableisalist consisting of a sound, the pitch of that
sound, and T (meaning the sound is periodic).

In the following, a sound is first read from the file denp- snd. nh. Then, the ext r act function is
used to extract the portion of the sound between 0.110204 and 0.13932 seconds. (These numbers might
be obtained by first plotting the sound and estimating the beginning and end of a period, or by using some
software to look for good zero crossings.) The result of ext ract becomes the first element of a list.
The next element is the pitch (24.848422), and the last element is T. The list is assigned to
fmvoi ce.

(if (not (boundp 'a-snd))
(setf a-snd (s-read "deno-snd.nh" :srate 22050.0)))

(setf *fmvoice* (list
(extract 0.110204 0.13932 (cue a-snd))
24. 848422

m)

The file examples.Isp contains an extensive example of how to locate zero-crossings, extract a period,
build awaveform, and generate atone fromit. (See ex37 through ex40 in thefile)

4.6. Filter Examples

Nyquist provides a variety of filters. All of these filters take either real numbers or signals as
parameters. If you pass asignal as a filter parameter, the filter coefficients are recomputed at the sample
rate of the control signal. Since filter coefficients are generally expensive to compute, you may want to
select filter control rates carefully. Use control - srat e- abs (Section 5.3) to specify the default
control sample rate, or use f or ce- srat e (Section 5.2.2) to resample a signal before passing it to a
filter.

Before presenting examples, let’ s generate some unfiltered white noise;
(play (noise))
Now low-pass filter the noise with a 1000Hz cutoff:
(play (I'p (noise) 1000.0))
The high-pass filter is the inverse of the low-pass:
(play (hp (noise) 1000.0))

MORE EXAMPLES Page 31

Hereis alow-pass filter sweep from 100Hz to 2000Hz:
(play (I'p (noise) (pw 0.0 100.0 1.0 2000.0 1.0))))
And a high-pass sweep from 50Hz to 4000Hz:
(play (hp (noise) (pw 0.0 50.0 1.0 4000.0 1.0)))

The band-pass filter takes a center frequency and a bandwidth parameter. This example has a 500Hz
center frequency with a 20Hz bandwidth. The scale factor is necessary because, due to the resonant peak
of thefilter, the signal amplitude exceeds 1.0:

(play (reson (scale 0.005 (noise)) 500.0 20.0)))
In the next example, the center frequency is swept from 100 to 1000Hz, using a constant 20Hz
bandwidth:

(play (reson (scale 0.005 (noise))
(pw 0.0 100.0 1.0 1000.0 1.0) 20.0)))

For another example with explanations, seedenos/ wi nd_tutori al . ht m

4.7.DSPin Lisp

In almost any signal processing system, the vast majority of computation takes place in the inner loops
of DSP algorithms, and Nyquist is designed so that these time-consuming inner loops are in highly-
optimized machine code rather than relatively slow interpreted lisp code. As a result, Nyquist typically
spends 95% of itstime in these inner loops; the overhead of using a Lisp interpreter is negligible.

The drawback is that Nyquist must provide the DSP operations you need, or you are out of luck. When
Nyquist is found lacking, you can either write a new primitive signal operation, or you can perform DSP
in Lisp code. Neither option is recommended for inexperienced programmers. Instructions for extending
Nyquist are given in Appendix I. This section describes the process of writing a new signal processing
function in Lisp.

Before implementing a new DSP function, you should decide which approach is best. First, figure out
how much of the new function can be implemented using existing Nyquist functions. For example, you
might think that a tapped-delay line would require a new function, but in fact, it can be implemented by
composing sound transformations to accomplish delays, scale factors for attenuation, and additions to
combine the intermediate results. This can all be packaged into a new Lisp function, making it easy to
use. If the function relies on built-in DSP primitives, it will execute very efficiently.

Assuming that built-in functions cannot be used, try to define a new operation that will be both simple
and general. Usually, it makes sense to implement only the kernel of what you need, combining it with
existing functions to build a complete instrument or operation. For example, if you want to implement a
physical model that requires a varying breath pressure with noise and vibrato, plan to use Nyquist
functions to add a basic pressure envelope to noise and vibrato signals to come up with a composite
pressure signal. Pass that signal into the physical model rather than synthesizing the envelope, noise, and
vibrato within the model. This not only simplifies the model, but gives you the flexibility to use all of
Nyquist’s operations to synthesize a suitable breath pressure signal.

Having designed the new ‘‘kernel’’ DSP operation that must be implemented, decide whether to use C
or Lisp. To use C, you must have a C compiler, the full source code for Nyquist, and you must learn about
extending Nyquist by reading Appendix I. This is the more complex approach, but the result will be very

Page 32 NYQUIST MANUAL

efficient. A C implementation will deal properly with sounds that are not time-aligned or matched in
sample rates. To use Lisp, you must learn something about the XLISP object system, and the result will
be about 50 times slower than C. Also, it is more difficult to deal with time alignment and differencesin
samplerates. The remainder of this section gives an example of aLisp version of snd- pr od toillustrate
how to write DSP functions for Nyquist in Lisp.

The snd- pr od function is the low-level multiply routine. It has two sound parameters and returns a
sound which is the product of the two. To keep things simple, we will assume that two sounds to be
multiplied have a matched sample rate and matching start times. The DSP algorithm for each output
sampleis simply to fetch a sample from each sound, multiply them, and return the product.

To implement snd- pr od in Lisp, three components are required:

1. An object is used to store the two parameter sounds. This object will be called upon to yield
samples of the result sound;

2. Within the object, the snd- f et ch routine is used to fetch samples from the two input
sounds as needed;

3. The result must be of type SOUND, so snd- f ronpbj ect is used to create the result
sound.

The combined solution will work as follows. The result is a value of type sound that retains a
reference to the object. When Nyquist needs samples from the sound, it invokes the sound's ‘‘fetch’’
function, which in turn sends an XLISP message to the object. The object will use snd- f et ch to get a
sample from each stored sound, multiply the samples, and return aresult.

Thus the goal is to design an XLISP object that, in response to a: next message will return a proper
sequence of samples. When the sound reaches the termination time, smply return NI L.

The XLISP manual (see Appendix IV describes the object system, but in a very terse style, so this
example will include some explanation of how the object system is used. First, we need to define a class
for the objects that will compute sound products. Every classis a subclass of classcl ass, and you create
asubclass by sending : newto aclass.

(setf product-class (send class :new ' (sl s2)))

The parameter ' (s1 s2) saysthat the new class will have two instance variables, s1 and s2. In other
words, every object which is an instance of class pr oduct - cl ass will have its own copy of these two
variables.

Next, we will definethe: next method for pr oduct - cl ass:

(send product-class :answer :next '()
"((let ((f1 (snd-fetch s1))
(f2 (snd-fetch s2)))
(cond ((and f1 f2)
(* f1 f2))

(t nil)))))
The : answer message is used to insert a new method into our new pr oduct - cl ass. The method is
described in three parts: the name (: next), aparameter list (empty in this case), and alist of expressions
to be evaluated. In this case, we fetch samples from s1 and s2. If both are numbers, we return their
product. If either isNI L, we terminate the sound by returning ni | .

MORE EXAMPLES Page 33

The: next method assumes that s1 and s2 hold the sounds to be multiplied. These must be installed
when the object is created. Objects are created by sending : newto aclass. A new object is created, and
any parameters passed to : new are then sent in a : i snew message to the new object. Here is the
. i snewdefinition for pr oduct - cl ass:

(send product-class :answer :isnew’(pl p2)
"((setf sl (snd-copy pl))
(setf s2 (snd-copy p2))))

Take careful note of the use of snd- copy in this initialization. The sounds s1 and s2 are modified
when accessed by snd- f et ch in the : next method defined above, but this destroys the illusion that
sounds are immutable values. The solution is to copy the sounds before accessing them; the original
sounds are therefore unchanged. (This copy also takes place implicitly in most Nyquist sound functions.)

To make this code safer for general use, we should add checksthat s1 and s2 are sounds with identical
starting times and sample rates; otherwise, an incorrect result might be computed.

Now we are ready to write snd- pr oduct , an approximate replacement for snd- pr od:

(defun snd-product (sl s2)
(let (obj)

(setf obj (send product-class :new sl s2))

(snd-fronobj ect (snd-t0 sl) (snd-srate sl1l) obj)))
This code first creates obj , an instance of pr oduct - cl ass, to hold s1 and s2. Then, it uses obj to
create a sound using snd- f r onobj ect . This sound is returned from snd- pr oduct . Note that in
snd- f ronobj ect, you must also specify the starting time and sample rate as the first two parameters.
These are copied from s 1, again assuming that s1 and s2 have matching starting times and sample rates.

Note that in more elaborate DSP agorithms we could expect the object to have a number of instance
variables to hold things such as previous samples, waveform tables, and other parameters.

Page 34

NYQUIST MANUAL

NYQUIST FUNCTIONS Page 35

5. Nyquist Functions

This chapter provides a language reference for Nyquist. Operations are categorized by functionality
and abstraction level. Nyquist is implemented in two important levels: the ‘‘high level’’ supports
behavioral abstraction, which means that operations like stret ch and at can be applied. These
functions are the ones that typical users are expected to use, and most of these functions are written in
XLISP.

The *‘low-level’” primitives directly operate on sounds, but know nothing of environmental variables
(such as*war p*, etc.). The names of most of these low-level functions start with ‘*'snd-"". In generd,
programmers should avoid any function with the ‘‘snd-"" prefix. Instead, use the ‘‘high-level’
functions, which know about the environment and react appropriately. The names of high-level functions
do not have prefixes like the low-level functions.

There are certain low-level operations that apply directly to sounds (as opposed to behaviors) and are
relatively ‘‘safe’’ for ordinary use. These are marked as such.

Nyquist uses both linear frequency and equal-temperament pitch numbers to specify repetition rates.
Frequency is aways specified in either cycles per second (hz), or pitch numbers, aso referred to as
‘‘steps,’’ asin steps of the chromatic scale. Steps are floating point numbers such that 60 = Middle C, 61
= C#, 61.23 is C# plus 23 cents, etc. The mapping from pitch number to frequency is the standard
exponential conversion, and fractional pitch numbers are allowed: frequency=440x 2(Pitth-69)/12 There
are many predefined pitch names. By default these are tuned in equal temperament, with A4 = 440Hz,
but these may be changed. (See Section 1.4).

5.1. Sounds
A sound is a primitive data type in Nyquist. Sounds can be created, passed as parameters, garbage
collected, printed, and set to variables just like strings, atoms, numbers, and other data types.

5.1.1. What isa Sound?
Sounds have 5 components:

* sr at e — the sample rate of the sound.

» sanpl es — the samples.

* si gnal - st art — thetime of the first sample.

* si gnal - st op — thetime of one past the last sample.

* | ogi cal - st op — the time at which the sound logically ends, e.g. a sound may end at the
beginning of adecay. Thisvauedefaultsto si gnal - st op, but may be set to any value.
It may seem that there should be | ogi cal - st art to indicate the logical or perceptual beginning of a
sound as well as a | ogi cal - st op to indicate the logical ending of a sound. In practice, only
| ogi cal - st op is needed; this attribute tells when the next sound should begin to form a sequence of
sounds. In this respect, Nyquist sounds are asymmetric: it is possible to compute sequences forward in
time by aligning the logical start of each sound with the | ogi cal - st op of the previous one, but one
cannot compute ‘‘backwards’, aligning the logical end of each sound with the logical start of its
successor. The root of this asymmetry is the fact that when we invoke a behavior, we say when to start,
and the result of the behavior tells us its logical duration. There is no way to invoke a behavior with a

Page 36 NYQUIST MANUAL

direct specification of when to stop?.

Note: there is no way to enforce the intended *‘ perceptual’’ interpretation of | ogi cal - st op. Asfar
as Nyquist is concerned, these are just numbers to guide the alignment of sounds within various control
constructs.

5.1.2. Multichannel Sounds

Multichannel sounds are represented by Lisp arrays of sounds. To create an array of sounds the XLISP
vect or function is useful. Most low-level Nyquist functions (the ones starting with snd-) do not
operate on multichannel sounds. Most high-level functions do operate on multichannel sounds.

5.1.3. Accessing and Creating Sound

Several functions display information concerning a sound and can be used to query the components of a
sound. There are functions that access samples in a sound and functions that construct sounds from
samples.

(sref sound time)

Accesses sound at the point time, which is alocal time. If time does not correspond to a sample
time, then the nearest samples are linearly interpolated to form the result. To access a particular
sample, either convert the sound to an array (see snd- sanpl es below), or use snd- srat e
and snd-t O (see below) to find the sample rate and starting time, and compute a time (t) from
the sample number (n):t=(n/srate)+t0 Thus, the lisp code to access the nth sample of a sound
would look like: (sref sound (global-to-local (+ (/ n (snd-srate
sound)) (snd-t0 sound)))) Hereiswhy sref interprets its time argument as a local
time. > (sref (ranp 1) 0.5) ; evaluate aramp attime05 0.5 > (at 2.0
(sref (ranmp 1) 0.5)) ; rampisshifted to start at 2.0 ; the time, 0.5, is shifted to 2.5
0. 5 If you were to use snd- sr ef , which treats time as global, instead of sr ef , which treats
time as local, then the first example above would return the same answer (0.5), but the second
example would return 0. Why? Because the (ranp 1) behavior would be shifted to start at
time 2.0, but the resulting sound would be evaluated at global time 0.5. By definition, sounds
have avalue of zero before their start time.

(sref-inverse sound value)
Search sound for the first point at which it achieves value and return the corresponding (linearly
interpolated) time. If no inverse exists, an error israised. This function is used by Nyquist in the
implementation of time warping.

(snd-fromarray tO sr array)
Convertsalisp array of FLONUMs into a sound with starting time t0 and sample rate sr. Safe for
ordinary use. Be aware that arrays of floating-point samples use 14 bytes per sample, and an
additional 4 bytes per sample are allocated by this function to create a sound type.

(snd-fronmarraystream tOsr object)
Creates a sound for which samples come from object. The starting time is tO (a FLONUM), and
the sample rate is sr. The object is an XLISP object (see Section 1V.11 for information on
objects.) A sound is returned. When the sound needs samples, they are generated by sending the
message : next to object. If object returns NI L, the sound terminates. Otherwise, object must
return an array of FLONUMSs. The valuesin these arrays are concatenated to form the samples of

IMost behaviors will stop at time 1, warped according to * War p* to some real time, but this is by convention and is not a
direct specification.

NYQUIST FUNCTIONS Page 37

the resulting sound. There is no provision for abject to specify the logical stop time of the sound,
so the logical stop time isthe termination time.

(snd-fronobj ecttO sr object)
Creates a sound for which samples come from object. The starting time is tO (a FLONUM), and
the samplerateis sr. The object isan XLISP object (see Section V.11 for information on objects.
A sound is returned. When the sound needs samples, they are generated by sending the message
: next to object. If object returns NI L, the sound terminates. Otherwise, object must return a
FLONUM. There is no provision for object to specify the logical stop time of the sound, so the
logical stop time is the termination time.

(snd-extent sound maxsamples)
Returns a list of two numbers. the starting time of sound and the terminate time of sound.
Finding the terminate time requires that samples be computed. Like most Nyquist functions, this
is non-destructive, so memory will be allocated to preserve the sound samples. If the sound is
very long or infinite, this may exhaust all memory, so the maxsamples parameter specifies a limit
on how many samples to compute. If thislimit is reached, the terminate time will be (incorrectly)
based on the sound having maxsamples samples. Thisfunction is safe for ordinary use.

(snd-fetch sound)
Reads samples sequentially from sound. This returns a FLONUM after each call, or NI L when
sound terminates. Note: snd- f et ch modifies sound; it is strongly recommended to copy sound
using snd- copy and access only the copy with snd- f et ch.

(snd-fetch-array sound len step)

Reads sequential arrays of samples from sound, returning either an array of FLONUMs or NI L
when the sound terminates. The len parameter, a FIXNUM, indicates how many samples should
be returned in the result array. After the array is returned, sound is modified by skipping over
step (a FIXNUM) samples. If step equals len, then every sample is returned once. |If step isless
than len, each returned array will overlap the previous one, so some samples will be returned
more than once. If step is greater than len, then some samples will be skipped and not returned in
any array. The step and len may change at each call, but in the current implementation, an internal
buffer is allocated for sound on the first call, so subsequent calls may not specify a greater len
than the first. Note: snd- f et ch- ar r ay modifies sound; it is strongly recommended to copy
sound using snd- copy and access only the copy with snd- f et ch- arr ay.

(snd-flatten sound maxlen)

This function is identical to snd- | engt h. You would use this function to force samples to be
computed in memory. Normally, thisis not a good thing to do, but here is one appropriate use: In
the case of sounds intended for wavetables, the unevaluated sound may be larger than the
evaluated (and typically short) one. Calling snd- f | at t en will compute the samples and allow
the unit generators to be freed in the next garbage collection. Note: If a sound is computed from
many instances of table-lookup oscillators, calling snd-f | att en will free the oscillators and
their tables. Calling (st at s) will print how many total bytes have been allocated to tables.

(snd-1ength sound maxien)
Counts the number of samples in sound up to the physical stop time. If the sound has more than
maxlen samples, maxien is returned. Calling this function will cause all samples of the sound to
be computed and saved in memory (about 4 bytes per sample). Otherwise, this function is safe
for ordinary use.

(snd- maxsanp sound)
Computes the maximum of the absolute value of the samplesin sound. Calling this function will
cause samples to be computed and saved in memory. (This function should have a maxlen
parameter to alow self-defense against sounds that would exhaust available memory.)
Otherwise, this function is safe for ordinary use. This function will probably be removed in a
future version. See peak, areplacement (page 66).

(snd-pl ay expression)

Page 38 NYQUIST MANUAL

Evaluates expression to obtain a sound or array of sounds, computes all of the samples (without
retaining them in memory), and returns. If this happens faster than real time for interesting
sounds, you might want to modify Nyquist to actually write the samples directly to an audio
output device. Meanwhile, since this function does not save samplesin memory or write them to
a disk, it is useful in determining how much time is spent calculating samples. See s- save
(Section 5.5) for saving samples to afile, and pl ay (Section 5.5) to play asound. This function
issafe for ordinary use.

(snd-print-tree sound)
Prints an ascii representation of the internal data structures representing a sound. This is useful
for debugging Nyquist. Thisfunctionis safe for ordinary use.

(snd-sanpl es sound limit)
Converts the samples into a lisp array. The data is taken directly from the samples, ignoring
shifts. For example, if the sound starts at 3.0 seconds, the first sample will refer to time 3.0, not
time 0.0. A maximum of limit samplesisreturned. Thisfunctionissafefor ordinary use, but like
snd-fromarray, it requires atotal of dightly over 18 bytes per sasmple.

(snd-srat e sound)
Returns the sample rate of the sound. Safe for ordinary use.

(snd-time sound)
Returns the start time of the sound. This will probably go away in a future version, so use
snd- t O instead.

(snd-t0 sound)
Returns the time of the first sample of the sound. Note that Nyquist operators such as add always
copy the sound and are allowed to shift the copy up to one half sample period in either direction
to align the samples of two operands. Safe for ordinary use.

(snd-print expresson maxlen)
Evaluates expression to yield a sound or an array of sounds, then prints up to maxien samples to
the screen (stdout). This is similar to snd- save, but samples appear in text on the screen
instead of in binary in afile. Thisfunction isintended for debugging. Safe for ordinary use.

(snd-set-1ogical -stop sound time)
Returns a sound which is sound, except that the logical stop of the sound occurs at time. Note: do
not cal this function. When defining a behavior, use set-I|ogical-stop or
set - | ogi cal - st op- abs instead.

(snd-sref sound time)
Evaluates sound at the global time given by time. Safe for ordinary use, but normally, you should
call sref instead.

(snd-stop-tinme sound)
Returns the stop time of sound. Sounds can be “‘clipped’’ or truncated at a particular time. This
function returns that time or MAX-STOP-TIME if he programmer has not specified a stop time
for the sound. Safefor ordinary use.

(soundp sound)
Returnstrue iff sound isa SOUND. Safefor ordinary use.

(stats)
Prints the memory usage status. See also the XLISP memfunction. Safe for ordinary use. Thisis
the only way to find out how much memory is being used by table-lookup oscillator instances.

NYQUIST FUNCTIONS Page 39

5.1.4. Miscellaneous Functions
These are all safe and recommended for ordinary use.

(db-to-linear x)

Returns the conversion of x from decibels to linear. 0dB is converted to 1. 20dB represents a
linear factor of 10. If x is a sound, each sample is converted and a sound is returned. If xisa
multichannel sound, each channel is converted and a multichannel sound (array) is returned.
Note: With sounds, conversion is only performed on actual samples, not on the implicit zeros
before the beginning and after the termination of the sound. Sample rates, start times, etc. are
taken from x.

(foll ow sound floor risetime falltime lookahead)

(gate

An envelope follower intended as a commponent for compressor and limiter functions. The basic
goal of thisfunction isto generate a smooth signal that rides on the peaks of the input signal. The
usual objective isto produce an amplitude envelope given a low-sample rate (control rate) signa
representing local RMS measurements. The first argument is the input signal. The floor is the
minimum output value. The risetime is the time (in seconds) it takes for the output to rise
(exponentially) from floor to unity (1.0) and the falltime is the time it takes for the output to fal
(exponentially) from unity to floor. The algorithm looks ahead for peaks and will begin to
increase the output signal according to risetime in anticipation of a peak. The amount of
anticipation (in seconds) is given by lookahead. The algorithm is as follows: the output value is
allowed to increase according to risetime or decrease according to falltime. If the next input
sample isin this range, that sample is simply output as the next output sample. If the next input
sample is too large, the algorithm goes back in time as far as necessary to compute an envelope
that rises according to risetime to meet the new value. The algorithm will only work backward as
far as lookahead. If that is not far enough, then there is a fina forward pass computing a rising
signal from the earliest output sample. In this case, the output signal will be at least momentarily
less than the input signal and will continue to rise exponentially until it intersects the input signal.
If the input signal falls faster than indicated by falltime, the output fall rate will be limited by
falltime, and the fall in output will stop when the output reaches floor. This algorithm can make
two passes througth the buffer on sharply rising inputs, so it is not particularly fast. With short
buffers and low sample rates this should not matter. See snd- avg for a function that can help to
generate a low-sample-rate input for f ol | ow. See snd- chase in Section 5.6.3 for a related
filter.

sound floor risetime falltime lookahead threshold)

Generate an exponentia rise and decay intended for noise gate implementation. The decay starts
when the signal drops below threshold and stays there for longer than lookahead (a FLONUMin
seconds). (The signal begins to drop when the signal crosses threshold, not after lookahead.)
Decay continues until the value reaches floor (a FLONUM), at which point the decay stops and the
output value is held constant. Either during the decay or after the floor is reached, if the signal
goes above threshold, then the ouptut value will rise to unity (1.0) at the point the signal crosses
the threshold. Because of internal lookahead, the signal actually begins to rise before the signal
crosses threshold. The rise is a constant-rate exponential and set so that a rise from floor to unity
occurs in risetime. Similary, the fall is a constant-rate exponential such that a fall from unity to
floor takes falltime.

(hz-to-step freg)

Returns a step humber for freq (in hz), which can be either a number of a SOUND. The result has
the same type as the argument. See also st ep-t 0- hz (below).

(l'inear-to-db x)

Returns the conversion of x from linear to decibels. 1 isconvertedto 0. 0is convertedto -INF (a
specia |EEE floating point value.) A factor of 10 represents a 20dB change. If x isasound, each
sample is converted and a sound is returned. If x is a multichannel sound, each channel is
converted and a multichannel sound (array) is returned. Note: With sounds, conversion is only
performed on actual samples, not on the implicit zeros before the beginning and after the

Page 40 NYQUIST MANUAL

termination of the sound. Start times, sample rates, etc. are taken from x.

(log X
Calculates the natural log of x (a FLONUM). (Sees- | og for aversion that operates on signals.)
(set-control -srate rate)
Sets the default sampling rate for control signals to rate by setting
def aul t - control - srat e and renitializing the environment. Do not call this within any
synthesis function (seethecont r ol - sr at e- abs transformation, Section 5.3).

(set-sound-srate rate
Sets the default sampling rate for audio signals to rate by setting * def aul t - sound- sr at e*
and reinitializing the environment. Do not call this within any synthesis function (see the
sound- sr at e- abs transformation, Section 5.3).

(set-pitch-nanes)

Initializes pitch variables (c0, ¢sO0, df 0, dO, ... b0, c1, ... b7). A440 (the default tuning) is
represented by the step 69.0, so the variable a4 (fourth octave A) is set to 69.0. Y ou can change
the tuning by setting * A4- Hert z* to a value (in Hertz) and calling set - pi t ch- nanmes to
reinitialize the pitch variables. Note that this will result in non-integer step values. It does not
alter the mapping from step values to frequency. There is no built-in provision for stretched
scales or non-equal temperament, although users can write or compute any desired fractional step
values.

(st ep-to-hz pitch)
Returns a frequency in hz for pitch, a step number or a SOUND type representing a time-varying
step number. The result is a FLONUMIf pitch is a number, and a SOUND if pitch isa SOUND. See
alsohz-t o- st ep (above).

(get-duration dur)
Gets the actual duration of of something starting at alocal time of 0 and ending at alocal time of
dur times the current sustain. For convenience, *r sl t * is set to the global time corresponding to
local time zero.

(get-1oud)
Gets the current value of the *| oud* environment variable. If *| oud* is a signd, it is
evaluated at local time 0 and a number (FLONUM) is returned.

(get - sust ai n)
Gets the current value of the * sust ai n* environment variable. If *sust ai n* isasignd, itis
evaluated at local time 0 and a number (FLONUM) is returned.

(get-transpose)
Gets the current value of the *t r anspose* environment variable. If *transpose* is a
signal, it isevaluated at local time 0 and a number (FLONUM is returned.

(get - war p)

Gets a function corresponding to the current value of the *war p* environment variable. For
efficiency, * war p* is stored in three parts representing a shift, a scale factor, and a continuous
warp function. Get - war p is used to retrieve a signal that maps logical time to real time. This
signal combines the information of all three components of *war p* into asingle signal. If the
continuous warp function component is not present (indicating that the time warp is a simple
combination of at and st r et ch transformations), an error israised. Thisfunction is mainly for
internal system use. In the future, get - war p will probably be reimplemented to always return a
signal and never raise an error.

(1 ocal -to-gl obal local-time)
Converts ascore (local) time to area (global) time according to the current environment.

(osc-enabl e flag)
Enable or disable Open Sound Control. (See Appendix 11.) Enabling creates a socket and a

NYQUIST FUNCTIONS Page 41

service that listens for UDP packets on port 7770. Currently, only messages of the form
\'sl i der with an integer index and a floating point value are accepted. These set internal slider
values accessed by the snd- sl i der function. Disabling terminates the service (polling for
messages) and closes the socket. The previous state of enablement is returned, e.g. if OSC is
enabled and flag is nil, OSC is disabled and T (true) is returned because OSC was enabled at the
time of the call. This function only exists if Nyquist is compiled with the compiler flag OSC.
Otherwise, the function exists but always returns the symbol DI SABLED. Consider lowering the
audio latency using snd- set - | at ency. Warning: there is the potential for network-based
attacks using OSC. It is tempting to add the ability to evaluate XLISP expressions sent via OSC,
but this would create unlimited and unprotected access to OSC clients. For now, it isunlikely that
an attacker could do more than manipulate slider values.

(snd-set-1atency latency)
Set the latency requested when Nyquist plays sound to latency, a FLONUM The previous value is
returned. The default is 0.3 seconds. To avoid glitches, the latency should be greater than the time
required for garbage collection and message printing and any other system activity external to
Nyquist.

5.2. Behaviors

5.2.1. Using Previously Created Sounds

These behaviors take a sound and transform that sound according to the environment. These are useful
when writing code to make a high-level function from a low-level function, or when cuing sounds which
were previously created:

(cue sound)
Applies* | oud*, the starting time from * war p*,*st art *, and * st op* to sound.

(cue-file filename)
Same as cue, except the sound comes from the named file, samples from which are coerced to
the current default * sound- sr at e* sample rate.

(sound sound)
Applies*| oud*, *war p*,*start*, and*st op* to sound.
(control sound)

This function is identical to sound, but by convention is used when sound is a control signal
rather than an audio signal.

5.2.2. Sound Synthesis
These functions provide musically interesting creation behaviors that react to their environment; these
are the ‘*unit generators’’ of Nyquist:

(const value [duration])
Creates a constant function at the * cont r ol - sr at e*. Every sample has the given value, and
the default duration is 1.0. See also s-r est, which is equivalent to calling const with zero,
and note that you can pass scalar constants (numbers) to si m sum and mul t where they are
handled more efficiently than constant functions.

(env t; t, t, I3 1, I3 [dur])
Creates a 4-phase envelope. t; is the duration of phase i, and |, is the final level of phasei. t;is
implied by the duration dur, and 1, is 0. 0. If dur is not supplied, then 1. O is assumed. The
envelope duration is the product of dur, *stret ch*, and *sust ai n*. Ift; +t, + 2ms+1,is

Page 42 NYQUIST MANUAL

greater than the envelope duration, then a two-phase envelope is substituted that has an
attack/release time ratio of t,/t,. The sample rate of the returned sound is*cont r ol - sr at e*.
(See pwl for a more general piece-wise linear function generator.) The effect of time warping is
to warp the starting time and ending time. The intermediate breakpoints are then computed as
described above.

(exp-dec hold halfdec length)
This convenient envelope shape is a special case of pwev (see Section 5.2.2.2). The envelope
starts at 1 and is constant for hold seconds. It then decays with a half life of halfdec seconds until
length. (The total duration is length.) In other words, the amplitude falls by half each halfdec
seconds. When stretched, this envelope scales linearly, which means the hold time increases and
the half decay time increases.

(force-srate srate sound)
Returns a sound which is up- or down-sampled to srate. Interpolation is linear, and no
prefiltering is applied in the down-sample case, so aliasing may occur. Seealsor esanpl e.

(I fo freq [duration table phase])
Just like osc (below) except this computes at the *control - srate* and frequency is
specified in Hz. Phase is specified in degrees. The *t ranspose* and *sust ai n* is not
applied. The effect of time warping is to warp the starting and ending times. The signal itself
will have a constant unwarped frequency.

(fmfo freq [table phase])
A low-frequency oscillator that computes at the * cont r ol - sr at e* using a sound to specify a
time-varying frequency in Hz. Phase is a FLONUM in degrees. The duration of the result is
determined by freg.

(maket abl e sound)
Assumes that the samples in sound constitute one period of a wavetable, and returns a wavetable
suitable for use as the table argument to the osc function (see below). Currently, tables are
limited to 1,000,000 samples. This limit is the compile-time constant nax_t abl e_| en setin
sound. h.

(bui | d- harnmoni ¢ n table-size)
Intended for constructing wavetables, this function returns a sound of length table-size samples
containing n periods of a sinusoid. These can be scaled and summed to form a waveform with
the desired harmonic content. See page 6 for an example.

(clarinet step breath-env)
A physical model of a clarinet from STK. The step parameter is a FLONUMthat controls the tube
length, and the breath-env (a SOUND) controls the air pressure and also determines the length of
the resulting sound. The breath-env signal should range from zero to one.

(clarinet-freqstep breath-env freg-env)
A variation of cl ari net that includes a variable frequency control, freg-env, which specifies
frequency deviation in Hz. The duration of the resulting sound is the minimum duration of
breath-env and freg-env. These parameters may be of type FLONUM or SOUND. FLONUMS are
coerced into SOUNDs with anominal duration arbitrarily set to 30.

(clarinet-all step breath-env freg-env vibrato-freq vibrato-gain reed-stiffness noise)
A variation of cl ari net-freq that includes controls vibrato-freq (a FLONUM for vibrato
frequency in Hertz), vibrato-gain (a FLONUMfor the amount of amplitude vibrato), reed-stiffness
(a FLONUMor SOUND controlling reed stiffness in the clarinet model), and noise (a FLONUM or
SOUND controlling noise amplitude in the input air pressure). The vibrato-gain is a number from
zero to one, where zero indicates no vibrato, and one indicates a plus/minus 50% change in bresth
envelope values. Similarly, the noise parameter ranges from zero to one where zero means no
noise and one means white noise with a peak amplitude of plus/minus 40% of the breath-env. The
reed-stiffness parameter varies from zero to one. The duration of the resulting sound is the

NYQUIST FUNCTIONS Page 43

minimum duration of breath-env, freg-env, reed-stiffness, and noise. Aswithcl ari net -freq,
these parameters may be either FLONUMs or SOUNDs, and FL ONUMVS are coerced to sounds with a
nominal duration of 30.

(control -warp warp-fn signal [wrate])
Applies a warp function warp-fn to signal using function composition. If wrate is omitted, linear
interpolation is used. warp-fn is a mapping from score (logical) time to real time, and signal is a
function from score time to real values. The result is a function from real time to real values at a
sample rate of *control - srat e*. See sound- war p for an explanation of wrate and high-
quality warping.

(mul't beh; beh, ...)
Returns the product of behaviors. The arguments may aso be numbers, in which case simple
multiplication is performed. If a number and sound are mixed, the scal e function is used to
scale the sound by the number. When sounds are multiplied, the resulting sample rate is the
maximum sample rate of the factors.

(prod beh; beh, ...)
Sameasnul t .

(pan sound where)
Pans sound (a behavior) according to where (another behavior or a number). Sound must be
monophonic. Where may be a monophonic sound (e.g. (r anp) or simply a number (e.g. 0. 5).
In either case, where should range from 0 to 1, where O means pan completely left, and 1 means
pan completely right. For intermediate values, the sound to each channel is scaled linearly.
Presently, pan does not check its arguments carefully.

(prod beh; beh, ...)
Sameasnul t.

(resanpl e sound srate)
Similar to f or ce- sr at e, except high-quality interpolation is used to prefilter and reconstruct
the signal at the new sample rate. Also, the result is scaled by 0.95 to reduce problems with
clipping. (Seeadso sound- war p.)

(sax step breath-env)
A physical model of a sax from STK. The step parameter is a FLONUM that controls the tube
length, and the breath-env controls the air pressure and also determines the length of the resulting
sound. The breath-env signal should range from zero to one.

(sax-freqstep breath-env freg-env)
A variation of sax that includes a variable frequency control, freg-env, which specifies frequency
deviation in Hz. The duration of the resulting sound is the minimum duration of breath-env and
freg-env. These parameters may be of type FLONUM or SOUND. FLONUMs are coerced into
SOUNDs with anominal duration arbitrarily set to 30.

(sax-al | step breath-env freg-env vibrato-freq vibrato-gain reed-stiffness noise blow-pos
reed-tabl e-offset)
A variation of sax- f r eq that includes controls vibrato-fregq (a FLONUMfor vibrato frequency in
Hertz), vibrato-gain (a FLONUM for the amount of amplitude vibrato), reed-stiffness (a SOUND
controlling reed stiffness in the sax model), noise (a SOUND controlling noise amplitude in the
input air pressure), blow-pos (a SOUND controlling the point of excitation of the air column), and
reed-table-offset (a SOUND controlling a parameter of the reed model). The vibrato-gain is a
number from zero to one, where zero indicates no vibrato, and one indicates a plus/minus 50%
change in breath envelope values. Similarly, the noise parameter ranges from zero to one where
Zero means no noise and one means white noise with a peak amplitude of plus/minus 40% of the
breath-env. The reed-stiffness, blow-pos, and reed-table-offset parameters all vary from zero to
one. The duration of the resulting sound is the minimum duration of breath-env, freg-env,
reed-stiffness, noise, breath-env, blow-pos, and reed-table-offset. As with sax-freq, these

Page 44 NY QUIST MANUAL

parameters may be either FLONUMs or SOUNDs, and FLONUMVs are coerced to sounds with a
nominal duration of 30.

(scal e scale sound)
Scales the amplitude of sound by the factor scale. Identical function to snd- scal e, except that
it handles multichannel sounds. Sample rates, start times, etc. are taken from sound.

(scal e-db db sound)
Scales the amplitude of sound by the factor db, expressed in decibels. Sample rates, start times,
etc. are taken from sound.

(scal e-srate sound scale)
Scales the sample rate of sound by scale factor. This has the effect of linearly shrinking or
stretching time (the sound is not upsampled or downsampled). This is a specia case of
snd- xf or m(see Section 5.6.2).

(shift-time sound shift)
Shift sound by shift seconds. If the sound isf(t), then the result is f(t—shift). See Figure5. Thisis
aspecial case of snd- xf or m(see Section 5.6.2).

L/\\\

N———

Y

snd

|—shift->|

L~

N———

(shift-time snd shift)

Figure5: The shift-time function shifts a sound in time according to its shift
argument.

(sound-war p warp-fn signal [wrate])

Applies awarp function warp-fn to signal using function composition. If the optional parameter
wrate is omitted or NIL, linear interpolation is used. Otherwise, high-quality sample
interpolation is used, and the result is scaled by 0.95 to reduce problems with clipping
(interpolated samples can exceed the peak values of the input samples.) warp-fn is a mapping
from score (logical) timeto real time, and signal is a function from score time to real values. The
result is a function from real time to real values at a sample rate of * sound- sr at e*. Seeaso
control -war p.

If wrate is not NIL, it must be a number. The parameter indicates that high-quality resampling
should be used and specifies the sample rate for the inverse of warp-fn. Use the lowest humber
you can. (See below for details.) Note that high-quality resampling is much slower than linear
interpolation.

NYQUIST FUNCTIONS Page 45

To perform high-quality resampling by a fixed ratio, as opposed to a variable ratio allowed in
sound-war p, use scal e-srat e to stretch or shrink the sound, and then r esanpl e to
restore the original sample rate.

Sound- war p and cont r ol - war p both take the inverse of warp-fn to get a function from real
time to score time. Each sample of this inverse is thus a score time; signal is evaluated at each of
these score times to yield a value, which is the desired result. The sample rate of the inverse warp
function is somewhat arbitrary. With linear interpolation, the inverse warp function sample rateis
taken to be the output sample rate. Note, however, that the samples of the inverse warp function
are stored as 32-bit floats, so they have limited precision. Since these floats represent sample
times, rounding can be a problem. Rounding in this case is equivalent to adding jitter to the
sample times. Nyquist ignores this problem for ordinary warping, but for high-quality warping,
the jitter cannot be ignored.

The solution is to use a rather low sample rate for the inverse warp function. Sound- war p can
then linearly interpolate this signal using double-precision floats to minimize jitter between
samples. The sample rate is a compromise: a low sample rate minimizes jitter, while a high
sample rate does a better job of capturing detail (e.g. rapid fluctuations) in the warp function. A
good rule of thumb is to use at most 1,000 to 10,000 samples for the inverse warp function. For
example, if the result will be 1 minute of sound, use a sample rate of 3000 samples/ 60 seconds =
50 samples/second. Because Nyquist has no advance information about the warp function, the
inverse warp function sample rate must be provided as a parameter. When in doubt, just try
something and let your ears be the judge.

(i ntegrate signal)
Computesthe integral of signal. The start time, sample rate, etc. are taken from signal.

(sl ope signal)
Computes the first derivative (slope) of signal. The start time, sample rate, etc. are taken from
signal.

5.2.2.1. O<cillators

(osc pitch [duration table phase])

Returns a sound which is the table oscillated at pitch for the given duration, starting with the
phase (in degrees). Defaults are: duration 1. 0 (second), table *t abl e*, phase 0. 0. The
default value of *t abl e* is a sinusoid. Duration is stretched by *war p* and *sust ai n*,
amplitude is nominally 1, but scaled by *| oudness*, the start time is logica time O,
transformed by * war p*, and the sample rate is * sound- sr at e*. The effect of time-warping
isto warp the starting and ending times only; the signal has a constant unwarped frequency. Note
1: tableisalist of theform

(sound pitch-number periodic)

where the first element is a sound, the second is the pitch of the sound (this is not redundant,
because the sound may represent any number of periods), and the third element is T if the sound
isone period of aperiodic signal, or ni | if the sound is a sample that should not be looped. The
maximum table sizeis set by max_t abl e_| en insound. h, and is currently set to 1,000,000.
Note 2: in the current implementation, it is assumed that the output should be periodic. See
snd- down and snd- up for resampling one-shot sounds to a desired sample rate. A future
version of osc will handle both cases. Note 3: When osc is called, memory is alocated for the
table, and samples are copied from the sound (the first element of the list which is the table
parameter) to the memory. Every instance of osc has a private copy of the table, so the total
storage can become large in some cases, for example in granular synthesis with many instances of
osc. In some cases, it may make sense to use snd- f | att en (see Section 5.1.3) to cause the

Page 46 NYQUIST MANUAL

sound to be fully realized, after which the osc and its table memory can be reclaimed by garbage
collection. The parti al function (see below) does not need a private table and does not use
much space.

(partial pitch env)
Returns a sinusoid at the indicated pitch; the sound is multiplied by env. The start time and
duration are taken from env, which is of course subject to transformations. The sample rate is
sound-srate. Theparti al functionisfaster than osc.

(si ne pitch [duration])
Returns a sinusoid at the indicated pitch. The sasmplerateis* sound- sr at e*. Thisfunctionis
like osc with respect to transformations. The si ne function isfaster than osc.

(hzosc hz [table phasg])
Returns a sound which is the table oscillated at hz starting at phase degrees. The default table is
t abl e and the default phase is 0.0. The default duration is 1. 0, but this is stretched as in
osc (see above). The hz parameter may be a SOUND, in which case the duration of the result is
the duration of hz. The samplerateis* sound- sr at e*.

(osc-saw hz)
Returns a sawtooth waveshape at the indicated frequency (in Hertz). The sample rate is
sound- sr at e. The hz parameter may be a sound as in hzosc (see above).

(osc-tri hz
Returns a triangle waveshape at the indicated frequency (in Hertz). The sample rate is
sound- sr at e. The hz parameter may be a sound as in hzosc (see above).

(osc-pul se hz hias [compare-shape])

Returns a square pulse with variable width at the indicated frequency (in Hertz). The bias
parameter controls the pulse width and should be between - 1 and +1, giving a pulse width from
0% (always at - 1) to 100% (always at +1). When bias is zero, a square wave is generated. Bias
may be a SOUND to create varying pulse width. If bias changes rapidly, strange effects may
occur. The optional compare-shape defaults to a hard step at zero, but other shapes may be used
to achieve non-sguare pulses. The osc- pul se behavior is written in terms of other behaviors
and defined in the file nyqui st. | sp using just a few lines of code. Read the code for the
compl ete story.

(anpbsc pitch modulation [table phase])
Returns a sound which is table oscillated at pitch. The output is multiplied by modulation for the
duration of the sound modulation. osc-table defaults to *t abl e*, and phase is the starting
phase (default 0.0 degrees) within osc-table. The samplerateis* sound- sr at e*.

(f nmosc pitch modulation [table phase])
Returns a sound which is table oscillated at pitch plus modulation for the duration of the sound
modulation. osc-table defaultsto *t abl e*, and phase is the starting phase (default 0.0 degrees)
within osc-table. The modulation is expressed in hz, e.g. a sinusoid modulation signal with an
amplitude of 1.0 (2.0 peak to peak), will cause a +/— 1.0 hz frequency deviation in sound.
Negative frequencies are correctly handled. The samplerateis* sound- sr at e*.

(buzz n pitch modulation)
Returns a sound with n harmonics of equal amplitude and a total amplitude of 1.0, using a well-
known function of two cosines. If n (an integer) islessthan 1, it is set to 1. Aliasing will occur if
nistoo large. The duration is determined by the duration of the sound modulation, which is a
frequency modulation term expressed in Hz (see Section 5.2.2.1). Negative frequencies are
correctly handled. The samplerateis* sound- sr at e*.

(pl uck pitch [duration] [final-amplitude])
Returns a sound at the given pitch created using a modified Karplus-Strong plucked string
algorithm. The tone decays from an amplitude of about 1.0 to about final-amplitude in duration
seconds. The default values are to decay to 0.001 (-60dB) in 1 second. The sample rate is

NYQUIST FUNCTIONS Page 47

sound- sr at e,

(si osc pitch modulation tables)

Returns a sound constructed by interpolating through a succession of periodic waveforms. The
frequency is given (in half steps) by pitch to which a modulation signal (in hz) is added, exactly
asin f nosc. The tables specify a list of waveforms as follows: (tableO timel table2 ... timeN
tableN), where each table is a sound representing one period. Each time is a time interval
measured from the starting time. The time is scaled by the nominal duration (computed using
(1l ocal -to-gl obal (get-sustain)))togettheactual time. Note that thisimplies linear
stretching rather than continuous timewarping of the interpolation or the breakpoints. The
waveform is table0 at the starting time, tablel after timel (scaled as described), and so on. The
duration and logical stop time is given by modulation. If modulation is shorter than timeN, then
the full sequence of waveforms is not used. If modulation is longer than timeN, tableN is used
after timeN without further interpolation.

(sanpl er pitch modulation [sample npoints])
Returns a sound constructed by reading a sample from beginning to end and then splicing on
copies of the same sound from aloop point to the end. The pitch and modulation parameters are
used as in f mosc described above. The optional sample (which defaults to the global variable
t abl e isalist of theform

(sound pitch-number |oop-start)

where the first element is a sound containing the sample, the second is the pitch of the sample,
and the third element is the time of the loop point. If the loop point is not in the bounds of the
sound, it is set to zero. The optional npoints specifies how many points should be used for
sample interpolation. Currently this parameter defaults to 2 and only 2-point (linear)
interpolation is implemented. It is an error to modulate such that the frequency is negative. Note
also that the loop point may be fractional. The samplerateis* sound- sr at e*.

5.2.2.2. Piece-wise Approximations

There are a number of related behaviors for piece-wise approximations to functions. The simplest of
these, pwl was mentioned earlier in the manual. It takes alist of breakpoints, assuming an initia point at
(0, 0), and a fina value of 0. An analogous piece-wise exponential function, pwe, is provided. Its
implicit starting and stopping values are 1 rather than 0. Each of these has variants. Y ou can specify the
initial and final values (instead of taking the default). You can specify time in intervals rather than
cummulative time. Finally, you can passalist rather than an argument list. Thisleadsto 16 versions:

Page 48 NYQUIST MANUAL

Piece-wise Linear Functions:
Cummulative Time:
Default initial point at (0, 0), final value at O:

pw
pw -1i st
Explicitinitial value:
pw v
pwW v-1i st
Relative Time:
Default initial point at (0, 0), final value at O:
pw r
pw r-1i st
Explicitinitial value:
pw vr
pw vr -l i st

Piece-wise Exponential Functions:
Cummulative Time:
Default initial point at (0, 1), final value at 1:

pwe
pwe-|i st

Explicitinitial value:
pwev
pwev- | i st

Relative Time:

Default initial point at (0, 1), final value at 1:
pwer
pwer-1i st

Explicitinitial value:
pwevr
pwevr -l i st

All of these functions are implemented in terms of pwl (see nyqui st . | sp for the implementations.
There are infinite opportunities for errors in these functions: if you leave off a data point, try to specify
pointsin reverse order, try to create an exponential that goes to zero or negative values, or many other bad
things, the behavior is not well-defined. Nyquist should not crash, but Nyquist does not necessarily
attempt to report errors at thistime.

(pW ty Iyt Ir oo)

Creates a piece-wise linear envelope with breakpoints at (0, 0), (t;, 1), (t,, I5), ... (t,, 0). The
breakpoint times are scaled linearly by the value of * sust ai n* (if *sust ai n* isa SOUND, it
is evaluated once at the starting time of the envelope). Each breakpoint time is then mapped
according to *war p*. The result is a linear interpolation (unwarped) between the breakpoints.
The samplerateis*cont r ol - srat e*. Breakpoint times are quantized to the nearest sample
time. If you specify one or more breakpoints withing one sample period, pw attempts to give a
good approximation to the specified function. In particular, if two breakpoints are simultaneous,
pw will move one of them to an adjacent sample, producing a steepest possible step in the
signal. The exact details of this *‘breakpoint munging’’ is subject to change in future versions.
Please report any cases where breakpoint lists give unexpected behaviors. The author will try to
apply the *‘principle of least surprise’’ to the design. Note that the times are relative to O; they
are not durations of each envel ope segment.

(pw - 1i st breakpoints)
If you have a list of breakpoints, you can use apply to apply the pw function to the

breakpoints, but if the list is very long (hundreds or thousands of points), you might get a stack
overflow because XLISP has a fixed-size argument stack. Instead, call pwl - | i st , passing one

NYQUIST FUNCTIONS Page 49

argument, the list of breakpoints.

(pwWv Iy t, 1, tyt3 ...t () _ _ _ _
Creates a piece-wise linear envelope with breakpoints at (0, 1), (t,, I,), etc., ending with (t,, | ..
Otherwise, the behavior islike that of pwi .

(pW v-1i st breakpoints)
A version of pwl v that takes asingle list of breakpoints asits argument. See pw -1 i st above
for therationale.

(pwWhr ig Iy s by o i)
Creates a piece-wise linear envelope with breakpoints at (0, 0), (ty, I4), (t,, I5), ... (t,, 0), where L
isthe sum of i, throughii;. In other words, the breakpoint times are specified in terms of intervals
rather than cummulative time. Otherwise, the behavior is like that of pw .

(pw r-1ist breakpoints)
A version of pwl r that takes asingle list of breakpoints as its argument. Seepwl - | i st above
for the rationale.

(pW vr Iy iy Iy igiig oo i 1)
Creates a piece-wise linear envelope with breakpoints at (0, 1,), (t,, 1,), etc., ending with (t,,, I,,,
where t; isthe sum of i, through i;. In other words, the breakpoint times are specified in terms of
interval's rather than cummulativetime. Otherwise, the behavior islike that of pw v.

(pw vr-1ist breakpoints)
A version of pw vr that takes a single list of breakpoints as its argument. See pw - | i st
above for the rationale.

(pwe t; 14 t, Ir ... t)

Creates a piece-wise exponential envelope with breakpoints at (0, 1), (t;, 1), (t,, 1)), ... (t, 1).
Exponential segments means that the ratio of values from sample to sample is constant within the
segment. (The current implementation actually takes the log of each value, computes a piece-
wise exponential from the points using pwl , then exponentiates each resulting sample. A faster
implementation is certainly possible!) Breakpoint values (| j) must be greater than zero.
Otherwise, this function is similar to pw , including stretch by * sust ai n*, mapping according
to *war p*, sample rate based on *contr ol - srat e*, and "breakpoint munging" (see pw
described above). Default initial and final values are of dubious value with exponentials. See
pwev below for the function you are probably looking for.

(pwe-1i st breakpoints)
A version of pwe that takes a single list of breakpoints as its argument. See pwl - I i st above
for therationale.

(pwev I t, |h, 3tz ...t 1)
Creates a piece-wise exponential envelope with breakpointsat (0, 1), (t,, I,), &tc., ending with (t,,,
I, Otherwise, the behavior islike that of pwe.

(pwev- | i st breakpoints)
A version of pwev that takes asingle list of breakpoints asits argument. See pw -1 i st above
for the rationale.

(pwer iq Iy iy Ir o0 i)
Creates a piece-wise exponential envelope with breakpoints at (0, 1), (t;, 1), (t,, 1), ... (t, 1),
where t; isthe sum of i, through i;. In other words, the breakpoint times are specified in terms of

interval's rather than cummulative time. Otherwise, the behavior is like that of pwe. Consider
using pwer v instead of this one.

(pwer -1 i st breakpoints)
A version of pwer that takes asingle list of breakpoints asits argument. See pw -1 i st above
for therationale.

Page 50 NYQUIST MANUAL

(pwevr Iy iy Iy igig ... g 1)
Creates a piece-wise exponentia envelope with breakpoints at (0, I,), (t,, 1), etc., ending with (t,,,
l» wheret. isthe sum of i, through i;. In other words, the breakpoint times are specified in terms
of intervals rather than cummulative time. Otherwise, the behavior is like that of pwev. Note
that thisis similar to the csound GENO5 generator. Which isuglier, GENO5 or pwevr?

(pwevr -1i st breakpoints)
A version of pwevr that takes a single list of breakpoints as its argument. See pw - | i st
above for the rationale.

5.2.2.3. Filter Behaviors

(al pass sound decay hz [minhZ])

Applies an al-pass filter to sound. This al-pass filter creates a delay effect without the
resonances of a comb filter. The decay time of the filter is given by decay. The hz parameter
must be a number or sound greater than zero. It is used to compute delay, which is then rounded
to the nearest integer number of samples (so the frequency is not always exact. Higher sampling
rates yield better delay resolution.) The decay may be a sound or a number. In either case, it
must also be positive. (Implementation note: an exponentiation is needed to convert decay into
the feedback parameter, and exponentiation is typically more time-consuming than the filter
operation itself. To get high performance, provide decay at a low sample rate)) The resulting
sound will have the start time, sample rate, etc. of sound. If hz is of type SOUND, the delay may
be time-varying. Linear interpolation is then used for fractional sample delay, but it should be
noted that linear interpolation implies a low-pass transfer function. Thus, this filter may behave
differently with a constant SOUND than it does with a FLONUMvalue for hz. In addition, if hzis
of type SOUND, then minhzis required. The hz parameter will be clipped to be greater than minhz,
placing an upper bound on the delay buffer length.

(conmb sound decay h2)

Applies a comb filter to sound. A comb filter emphasizes (resonates at) frequencies that are
multiples of a hz. The decay time of the resonance is given by decay. This is a variation on
f eedback- del ay (see below). The hz parameter must be a number greater than zero. It is
used to compute delay, which is then rounded to the nearest integer number of samples (so the
frequency is not always exact. Higher sampling rates yield better delay resolution.) The decay
may be a sound or a number. In either case, it must also be positive. (Implementation note: an
exponentiation is needed to convert decay into the feedback parameter for f eedback- del ay,
and exponentiation is typically more time-consuming than the filter operation itself. To get high
performance, provide decay at alow sample rate.) The resulting sound will have the start time,
sample rate, etc. of sound.

(congen gate risetime falltime)

Implements an analog synthesizer-style contour generator. The input gate normally goes from 0.0
to 1.0 to create an attack and from 1.0 to 0.0 to start a release. During the attack (output is
increasing), the output converges half-way to gate in risetime (a FLONUM) seconds. During the
decay, the half-time is falltime seconds. The sample rate, start time, logical stop, and terminate
time all come from gate. If you want a nice decay, be sure that the gate goes to zero and stays
there for awhile before gate terminates, because congen (and all Nyquist sounds) go
immediately to zero at termination time. For example, you can use pw to build a pulse followed
by some zero time:

(pw 0 1 duty 1 duty 0 1)

Assuming duty is less than 1.0, this will be a pulse of duration duty followed by zero for a total
duration of 1.0.

(congen (pwi 0 1 duty 1 duty 0 1) 0.01 0.05)
will have a duration of 1.0 because that is the termination time of the pwl input. The decaying

NYQUIST FUNCTIONS Page 51

release of the resulting envelope will be truncated to zero at time 1.0. (Since the decay is
theoretically infinite, there is no way to avoid truncation, although you could multiply by another
envelope that smoothly truncates to zero in the last millisecond or two to get both an exponential
decay and a smooth final transition to zero.)

(convol ve sound response)
Convolves two signals. The first can be any length, but the computation time per sample and the
total space required are proportional to the length of response.

(f eedback- del ay sound delay feedback)
Applies feedback delay to sound. The delay must be a number (in seconds). It is rounded to the
nearest sample to determine the length of the delay. The sample rate is the maximum from sound
and feedback (if feedback is also a sound). The amound of feedback should be less than one to
avoid an exponential increase in amplitude. The start time and stop time, and logical stop time
are taken from sound. Since output is truncated at the stop time of sound, you may want to
append some silence to sound to give the filter time to decay.

(I'p sound cutoff)
Filters sound using a first-order Butterworth low-pass filter. Cutoff may be afloat or asignal (for
time-varying filtering) and expresses hertz. Filter coefficients (requiring trig functions) are
recomputed at the sample rate of cutoff. The resulting sample rate, start time, etc. are taken from
sound.

(tone sound cutoff)
No longer defined; usel p instead, or defineit by adding (set fn t one | p) toyour program.

(hp sound cutoff)
Filters sound using a first-order Butterworth high-pass filter. Cutoff may be a float or a signal
(for time-varying filtering) and expresses hertz. Filter coefficients (requiring trig functions) are
recomputed at the sample rate of cutoff. Thisfilter isan exact complement of | p.

(at one sound cutoff)
No longer defined; use hp instead, or define it by adding (setfn atone hp) to your
program.

(reson sound center bandwidth n)

Apply aresonating filter to sound with center frequency center (in hertz), which may be afloat or
a signal. Bandwidth is the filter bandwidth (in hertz), which may aso be a signal. Filter
coefficients (requiring trig functions) are recomputed at each new sample of either center or
bandwidth, and coefficients are not interpolated. The last parameter n specifies the type of
normalization as in Csound: A vaue of 1 specifies a peak amplitude response of 1.0; all
frequencies other than hz are attenuated. A value of 2 specifies the overall RMS value of the
amplitude response is 1.0; thus filtered white noise would retain the same power. A vaue of zero
specifies no scaling. The resulting sample rate, start time, etc. are taken from sound.

One application of reson is to simulate resonances in the human voca tract. See
denps/ voi ce_synt hesi s. ht nfor sample code and documentation.

(areson sound center bandwidth n)
The ar eson filter is an exact complement of r eson such that if both are applied to the same
signal with the same parameters, the sum of the results yeilds the original signal.

(shape signal table origin)

A waveshaping function. Use table as a function; apply the function to each sample of signal to
yield anew sound. Signal should range from -1 to +1. Anything beyond these boundsis clipped.
Table is also a sound, but it is converted into a lookup table (similar to table-lookup oscillators).
The origin is a FLONUM and gives the time which should be considered the origin of table.
(This is important because table cannot have values at negative times, but signal will often have
negative values. The origin gives an offset so that you can produce suitable tables.) The output
atimetis:

Page 52 NYQUIST MANUAL

table(origin + clip(signal (t))

where clip(x) = max(1, min(-1, X)). (E.g. if table isa signa defined over the interva [0, 2], then
origin should be 1.0. The value of table at time 1.0 will be output when the input signal is zero.)
The output has the same start time, sample rate, etc. as signal. The shape function will also
accept multichannel signals and tables.

Further discussion and examples can be found in denos/ di st orti on. ht m The shape function is
also used to map frequency to amplitude to achieve a spectral envelope for Shepard tones in
denos/ shepard. | sp.

(bi quad signal b0 bl b2 a0 al a2)
A fixed-parameter biquad filter. All filter coefficients are FLONUMs. See also | owpass2,
hi ghpass2, bandpass2, notch2, allpass2, eq-lowshel f, eq-highshelf,
eq- band, | owpass4, | owpass6, hi ghpass4, and hi ghpass8 in this section for
convenient variations based on the same filter. The equations for the filter are: z, = s, + al * z,, ;
+a2* z,,andy,=z,*b0+2z, ,*bl+2z ,* b2

(bi quad- m signal b0 bl b2 a0 al a2)
A fixed-parameter biquad filter with Matlab sign conventions for a0, al, and a2. All filter
coefficients are FLONUMS.

(1 owpass2 signal hz [q])
A fixed-parameter, second-order lowpass filter based on snd- bi quad. The cutoff frequency is
given by hz (a FLONUM and an optiona Q factor is given by g (a FLONUM).

(hi ghpass2 signal hz [q])
A fixed-parameter, second-order highpass filter based on snd- bi quad. The cutoff frequency is
given by hz (a FLONUM and an optional Q factor is given by g (a FLONUM.

(bandpass?2 signal hz [q])
A fixed-parameter, second-order bandpass filter based on snd- bi quad. The center frequency is
given by hz (a FLONUM and an optional Q factor is given by g (a FLONUM).

(notch2 signal hz [q])
A fixed-parameter, second-order notch filter based on snd- bi quad. The center frequency is
given by hz (a FLONUM and an optiona Q factor is given by g (a FLONUM).

(al | pass2 signal hz [q])
A fixed-parameter, second-order allpass filter based on snd- bi quad. The frequency is given by
hz (a FLONUM and an optional Q factor is given by g (a FLONUM.

(eqg-l owshel f signal hz gain [slope])
A fixed-parameter, second-order bass shelving equalization (EQ) filter based on snd- bi quad.
The hz parameter (a FLONUM)is the halfway point in the transition, and gain (a FLONUM is the
bass boost (or cut) in dB. The optional slope (a FLONUM) is 1.0 by default, and response becomes
peaky at values greater than 1.0.

(eqg- hi ghshel f signal hz gain [slop€])
A fixed-parameter, second-order treble shelving equalization (EQ) filter based on snd- bi quad.
The hz parameter (a FLONUM)is the halfway point in the transition, and gain (a FLONUM is the
treble boost (or cut) in dB. The optional slope (a FLONUM is 1.0 by default, and response
becomes peaky at values greater than 1.0.

(eq-band signal hz gain width)
A fixed- or variable-parameter, second-order midrange equalization (EQ) filter based on
snd- bi quad, snd- egbandcv and snd- egbandvvv. The hz parameter (a FLONUM is the
center frequency, gain (a FLONUM) is the boost (or cut) in dB, and width (a FLONUM is the
half-gain width in octaves. Alternatively, hz, gain, and width may be SOUNDs, but they must al
have the same sample rate, e.g. they should al run at the control rate or at the sample rate.

(1 owpass4 signal hz)

NYQUIST FUNCTIONS Page 53

A four-pole Butterworth lowpass filter. The cutoff frequency is hz (a FLONUM).

(1 owpass6 signal hz)
A six-pole Butterworth lowpass filter. The cutoff frequency is hz (a FLONUM.

(1 owpass8 signal hz)
An eight-pole Butterworth lowpass filter. The cutoff frequency is hz (a FLONUM).

(hi ghpass4 signal hz)
A four-pole Butterworth highpassfilter. The cutoff frequency is hz (a FLONUM.

(hi ghpass6 signal hz)
A six-pole Butterworth highpass filter. The cutoff frequency is hz (a FLONUM.

(hi ghpass8 signal hz)
An eight-pole Butterworth highpass filter. The cutoff frequency is hz (a FLONUM.

(tapv sound offset vardelay maxdelay)
A delay line with avariable position tap. Identical to snd- t apv. Seeit for details (5.6.2).

5.2.2.4. More Behaviors

(clip sound peak)
Hard limit sound to the given peak, a positive number. The samples of sound are constrained
between an upper value of peak and a lower value of <()peak. If sound is a number, cl i p will
return sound limited by peak. If sound is a multichannel sound, cl i p returns a multichannel
sound where each channel is clipped. The result has the type, sample rate, starting time, etc. of
sound.

(s-abs sound)
A generalized absolute value function. If sound is a SOUND, compute the absolute value of each
sample. If sound is a number, just compute the absolute value. If sound is a multichannel sound,
return a multichannel sound with s- abs applied to each element. The result has the type, sample
rate, starting time, etc. of sound.

(s-sqgrt sound)
A generalized square root function. If sound is a SOUND, compute the square root of each
sample. If sound is a number, just compute the square root. If sound is a multichannel sound,
return a multichannel sound with s-sqrt applied to each element. The result has the type,
sample rate, starting time, etc. of sound. In taking square roots, if an input sample is less than
zero, the corresponding output sample is zero. This is done because the square root of a negative
number is undefined.

(s-exp sound)
A generalized exponential function. If sound is a SOUND, compute € for each sample x. If
sound is a number X, just compute €X. If sound is a multichannel sound, return a multichannel
sound with s- exp applied to each element. The result has the type, sample rate, starting time,
etc. of sound.

(s-10g sound)
A generalized natural log function. If sound is a SOUND, compute In(x) for each sample x. If
sound is a number X, just compute In(x). If sound is a multichannel sound, return a multichannel
sound with s- | og applied to each element. The result has the type, sample rate, starting time,
etc. of sound. Note that the In of O is undefined (some implementations return negative infinity),
so use this function with care.

(s-max soundl sound2)
Compute the maximum of two functions, soundl and sound2. This function also accepts numbers
and multichannel sounds and returns the corresponding data type. The start time of the result is
the maximum of the start times of soundl and sound2. The logical stop time and physical stop

Page 54 NY QUIST MANUAL

time of the result is the minimum of the logical stop and physical stop times respectively of
soundl and sound2. Note, therefore, that the result value is zero except within the bounds of both
input sounds.

(s-m n soundl sound2)
Compute the minimum of two functions, soundl and sound2. This function also accepts numbers
and multichannel sounds and returns the corresponding data type. The start time of the result is
the maximum of the start times of soundl and sound2. The logical stop time and physical stop
time of the result is the minimum of the logical stop and physical stop times respectively of
soundl and sound2. Note, therefore, that the result value is zero except within the bounds of both
input sounds.

(osc-not e pitch [duration env loud table])
Same as osc, but osc- not e multiplies the result by env. The env may be a sound, or a list
supplying (t; ty t4 14 15 15). Theresult hasasamplerate of * sound- sr at e*.

(quanti ze sound steps)
Quantizes sound as follows: sound is multiplied by steps and rounded to the nearest integer. The
result isthen divided by steps. For example, if stepsis 127, then asignal that ranges from -1 to +1
will be quantized to 255 levels (127 less than zero, 127 greater than zero, and zero itself). This
would match the quantization Nyquist performs when writing a signal to an 8-bit audio file. The
sound may be multi-channel.

(ranp [duration])
Returns a linear ramp from O to 1 over duration (default is 1). The function actually reaches 1 at
duration, and therefore has one extra sample, making the total duration be duration +
1/*Control - srat e*. See Figure 6 for more detail. Ramp is unaffected by the sust ai n
transformation. The effect of time warping is to warp the starting and ending times only. The
ramp itself isunwarped (linear). The samplerateis*control - sr at e*.

(rms sound [rate window-size])
Computes the RMS of sound using a square window of size window-size. The result has a sample
rate of rate. The default value of rate is 100 Hz, and the default window size is 1/rate seconds
(converted to samples). Therate isa FLONUMand window-size is a Fl XNUM

(reci p sound)
A generalized reciprocal function. If sound is a SOUND, compute 1/x for each sample x. If
sound is a number x, just compute 1/x. If sound is a multichannel sound, return a multichannel
sound with r eci p applied to each element. The result has the type, sample rate, starting time,
etc. of sound. Note that the reciprocal of 0 is undefined (some implementations return infinity),
so use this function with care on sounds. Division of sounds is accomplished by multiplying by
thereciprocal. Again, be careful not to divide by zero.

(s-rest [duration])
Create silence (zero samples) for the given duration at the sample rate * sound- sr at e*.
Default duration is 1.0 sec, and the sound is transformed in time according to *war p*. Note:
rest isalLisp function that is equivalent to cdr . Be careful to use s-r est when you need a
sound!

(noi se [duration])
Generate noise with the given duration. Duration (default is 1.0) is transformed according to
war p. Thesamplerateis* sound- sr at e* and the amplitudeis+/- *| oud*.

(yi n sound minstep maxstep stepsize)
Fundamental frequency estimation (pitch detection. Use the YIN agorithm to estimate the
fundamental frequency of sound, which must be a SOUND. The minstep, a FLONUM, is the
minimum frequency considered (in steps), maxstep, a FLONUM, is the maximum frequency
considered (in steps), and stepsize, a FIXNUM, is the desired hop size. Theresult isa*‘stereo’
signal, i.e. an array of two SOUNDSs, both at the same sample rate, which is approximately the

NYQUIST FUNCTIONS Page 55

1
(pw 11 1) (ranp)

Figure6: Ramps generated by pw and r anp functions. The pw version ramps
toward the breakpoint (1, 1), but in order to ramp back to zero at breakpoint (1, 0), the
function never reaches an amplitude of 1. If used at the beginning of a seq construct,
the next sound will begin at time 1. Ther anp version actually reaches breakpoint (1,
1); notice that it is one sample longer than the pw version. If used in a sequence, the
next sound after r anp would start at time 1 + P, where P is the sample period.

sample rate of sound divided by stepsize. The first SOUND consists of frequency estimates. The
second sound consists of values that measure the confidence or reliability of the frequency
estimate. A small value (less than 0.1) indicates fairly high confidence. A larger value indicates
lower confidence. This number can also be thought of as aratio of non-periodic power to periodic
power. When the number is low, it means the signal is highly periodic at that point in time, so the
period estimate will be reliable. Hint #1: See Alain de Cheveigne and Hideki Kawahara's article
"YIN, a Fundamental Frequency Estimator for Speech and Music" in the Journal of the Acoustic
Society of America, April 2002 for details on the yin algorithm. Hint #2: Typically, the stepsize
should be at least the expected number of samples in one period so that the fundamental
frequency estimates are calculated at a rate far below the sample rate of the signal. Frequency
does not change rapidly and the yin algorithm is fairly slow. To optimize speed, you may want to
use less than 44.1 kHz sample rates for input sounds. Yin uses interpolation to achieve potentially
fractional-sample-accurate estimates, so higher sample rates do not necessarily help the algorithm
and definitely slow it down. The computation time is O(n?) per estimate, where n is the number
of samples in the longest period considered. Therefore, each increase of minstep by 12 (an
octave) gives you afactor of 4 speedup, and each decrease of the sample rate of sound by a factor
of two gives you another factor of 4 speedup. Finally, the number of estimates is inversely
proportional to stepsize. Hint #3: Use snd- sr at e (see Section 5.1.3) to get the exact sample
rate of the result, which will be the sample rate of sound divided by stepsize. E.g. (snd- srate
(aref yin-output 0)), whereyi n-out put is a result returned by yi n, will be the
sample rate of the estimates.

5.3. Transformations

These functions change the environment that is seen by other high-level functions. Note that these
changes are usually relative to the current environment. There are also ‘‘absolute’’ versions of each
transformation function, with the exception of seq, seqrep, sim and si ntrep. The ‘‘absolute”
versions (starting or ending with ‘‘abs’’) do not look at the current environment, but rather set an
environment variable to a specific value. In this way, sections of code can be insulated from external

Page 56 NYQUIST MANUAL

transformations.

(abs-env beh)
Compute beh in the default environment. This is useful for computing waveform tables and
signals that are ‘‘outside’’ of time. For example, (at 10.0 (abs-env (my-beh))) is
equivalent to (abs-env (ny- beh)) becauseabs- env forcesthe default environment.

(at time beh)
Evaluate beh with * war p* shifted by time.

(at -abs time beh)
Evaluate beh with * war p* shifted so that local time O maps to time.

(conti nuous-control -warp beh)
Applies the current warp environment to the signal returned by beh. The result has the default
control sample rate *control -srate*. Linear interpolation is currently used.
Implementation: beh is first evaluated without any shifting, stretching, or warping. The result is
functionally composed with the inverse of the environment’s warp function.

(conti nuous-sound-war p beh)
Applies the current warp environment to the signal returned by beh. The result has the default
sound sample rate *sound-srate*. Linear interpolation is currently used. See
cont i nuous- cont r ol - war p for implementation notes.

(control -srate-abs srate beh)
Evauate beh with *cont r ol - sr at e* set to sample rate srate. Note: there is no ‘‘relative’”’
version of thisfunction.

(extract start stop beh)
Returns a sound which is the portion of beh between start and stop. Note that thisis done relative
to the current * war p* . Theresult is shifted to start according to * war p*, so normally the result
will start without a delay of start.

(extract-abs start stop beh)
Returns a sound which is the portion of beh between start and stop, independent of the current
war p. Theresult is shifted to start according to * war p* .

(1 oud volume beh)
Evaluates beh with *| oud* incremented by volume. (Recall that *| oud* is in decibels, so
increment is the proper operation.)

(1 oud- abs volume beh)
Evauates beh with *| oud* set to volume.

(sound- sr at e- abs srate beh)
Evauate beh with *sound- sr at e* set to sample rate srate. Note: there is no ‘‘relative”’
version of thisfunction.

(stretch factor beh)
Evaluates beh with * war p* scaled by factor. The effect isto ‘‘stretch’’ the result of beh (under
the current environment) by factor. See Chapter 3 for more information.

(stretch-abs factor beh)
Evaluates beh with *war p* set to alinear time transformation where each unit of logical time
maps to factor units of real time. The effect is to stretch the nominal behavior of beh (under the
default global environment) by factor. See Chapter 3 for more information.

(sustai n factor beh)
Evaluates beh with *sust ai n* scaled by factor. The effect is to ‘‘stretch’’ the result of beh
(under the current environment) by factor; however, the logical stop times are not stretched.
Therefore, the overall duration of a sequence is not changed, and sounds will tend to overlap if
sust ai n isgreater than one (legato) and be separated by silence if * sust ai n* islessthan

NYQUIST FUNCTIONS Page 57

one.

(sust ai n- abs factor beh)
Evaluates beh with * sust ai n* set to factor. (Seesust ai n, above.)

(transpose amount beh)
Evaluates beh with *t r anspose* shifted by amount. The effect is relative transposition by
amount semitones.

(transpose-abs amount beh)
Evaluates beh with *t r anspose* set to amount. The effect is the transposition of the nominal
pitches in beh (under the default global environment) by amount.

(war p fn beh)
Evaluates beh with *war p* modified by fn. The ideais that beh and fn are written in the same
time system, and fn warps that time system to local time. The current environment already
contains a mapping from loca time to global (real) time. The value of *war p* in effect when
beh is evaluated is the functional composition of theinitial * war p* with fn.

(war p- abs fn beh)
Evaluates beh with *war p* set to fn. In other words, the current * war p* is ignored and not
composed with fn to form the new * war p*.

5.4. Combination and Time Structure
These behaviors combine component behaviors into structures, including sequences (melodies),
simultaneous sounds (chords), and structures based on iteration.

(seq beh; [beh, ...])

Evaluates the first behavior beh; according to *ti me* and each successive behavior at the
| ogi cal - st op time of the previous one. The results are summed to form a sound whose
| ogi cal -stop isthel ogi cal - st op of the last behavior in the sequence. Each behavior
can result in a multichannel sound, in which case, the logical stop time is considered to be the
maximum logical stop time of any channel. The number of channels in the result is the number
of channels of the first behavior. If other behaviors return fewer channels, new channels are
created containing constant zero signals until the required number of channels is obtained. If
other behaviors return a ssmple sound rather than multichannel sounds, the sound is automatically
assigned to the first channel of a multichannel sound that is then filled out with zero signals. If
another behavior returns more channels than the first behavior, the error is reported and the
computation is stopped. Sample rates are converted up or down to match the sample rate of the
first sound in a sequence.

(seqrep (var limit) beh)
Iteratively evaluates beh with the atom var set with values from 0 to limit-1, inclusive. These
sounds are placed sequentialy in time asif by seq. The symbol var is aread-only local variable
to beh. Assignments are not restricted or detected, but may cause arun-time error or crash.

(sim[beh; beh, ...])
Returns a sound which is the sum of the given behaviors evaluated with current value of
war p. If behaviors return multiple channel sounds, the corresponding channels are added. If
the number of channels does not match, the result has the maximum. For example, if a two-
channel sound [L, R] is added to a four-channel sound [C1, C2, C3, C4], theresultis[L + C1, R
+ C2, C3, C4]. Argumentsto si mmay also be numbers. If al arguments are numbers, si mis
equivalent (although slower than) the + function. If anumber is added to a sound, snd- of f set
is used to add the number to each sample of the sound. The result of adding a number to two or
more sounds with different durations is not defined. Use const to coerce a number to a sound
of a specified duration. An important limitation of si mis that it cannot handle hundreds of
behaviors due to a stack size limitation in XLISP. To compute hundreds of sounds (e.g. notes) at

Page 58 NYQUIST MANUAL

specified times, seet i med- seq, below. See aso sumbelow.

(sinrep (var limit) beh)
Iteratively evaluates beh with the atom var set with values from 0 to limit-1, inclusive. These
sounds are then placed simultaneously intime asif by si m

(trigger s beh)

Returns a sound which is the sum of instances of the behavior beh. One instance is created each
time SOUND s makes a transition from less than or equal to zero to greater than zero. (If the first
sample of sis greater than zero, an instance is created immediately.) The sample rate of sand all
behaviors must be the same, and the behaviors must be (monophonic) SOUNDs. This function is
particularly designed to allow behaviors to be invoked in real time by making s a function of a
Nyquist dlider, which can be controlled by a graphica interface or by OSC messages. See
snd- sl i der in Section 5.6.1.

(set-1ogical -stop beh time)
Returns a sound with time as the logical stop time.

(suma[bc...])
Returns the sum of a, b, ¢, ..., alowing mixed addition of sounds, multichannel sounds and
numbers. ldentical to sim.

(mult a[bc...])
Returns the product of a, b, ¢, ..., alowing mixed multiplication of sounds, multichannel sounds
and numbers.

(diff a b)
Returns the difference between a and b. Thisfunctionisdefinedas(sum a (prod -1 b)).

(ti med- seqscore)

Computes sounds from a note list or ‘‘score.”” The score is of the form: * ((timel stretchl
behl) (time2 stretch2 beh2) ...), wheretimeN is the starting time, stretchN is the stretch
factor, and behN is the behavior. Note that score is normally a quoted list! The times must be in
increasing order, and each behN is evaluated using lisp’s eval , so the behN behaviors cannot
refer to local parameters or local variables. The advantage of this form over seq is that the
behaviors are evaluated one-at-a-time which can take much less stack space and overall memory.
One gpecial ‘‘behavior’” expression is interpreted directly by tinmed-seq:
(SCORE- BEGA N- END) isignored, not evaluated as a function. Normally, this special behavior
is placed at time 0 and has two parameters. the score start time and the score end time. These are
used in Xmusic functions. If the behavior has a: pi t ch keyword parameter which is alist, the
list represents a chord, and the expression is replaced by a set of behaviors, one for each note in
the chord. It followsthat if : pi t chisni |, the behavior represents arest and isignored.

5.5. Sound File Input and Output

(pl ay sound)
Play the sound through the DAC. The pl ay function writes a file and plays it. The details of
this are system-dependent, but pl ay is defined in the file system | sp. The variable
def aul t - sf - di r namesadirectory into which to save a sound file.

By default, Nyquist will try to normalize sounds using the method named by * aut onor mt ype*,
which is ' | ookahead by default. The lookahead method precomputes and buffers
aut onor m max- sanpl es samples, finds the peak value, and normalizes accordingly. The
" previ ous method bases the normalization of the current sound on the peak value of the
(entire) previous sound. This might be good if you are working with long sounds that start rather
softly. See Section 4.3 for more details.

If you want precise control over output levels, you should turn this feature off by typing:

NYQUIST FUNCTIONS Page 59

(aut onor nt of)
Reenabl e the automatic normalization feature by typing:
(aut onor nm on)

Play normally produces real-time output. The default is to send audio data to the DAC as it is computed
in addition to saving samples in a file. If computation is slower than real-time, output will be
choppy, but since the samples end up in a file, you can type (r) to replay the stored sound.
Real-time playback can be disabled by:

(sound- of f)
and reenabled by:
(sound-on)
Disabling real-time playback has no effecton (pl ay-file) or(r).

(play-file filename)
Play the contents of a sound file named by filename. The s- r ead function is used to read the
file, and unless filename specifies an absolute path or starts with **."", it will be read from
defaul t-sf-dir.

(aut onor nm on)
Enable automatic adjustment of a scale factor applied to sounds computed using the pl ay
command.

(aut onor nt of f)
Disable automatic adjustment of a scale factor applied to sounds computed using the pl ay
command.

(sound-on)
Enable real-time audio output when sound is computed by the the pl ay command.

(sound- of f)
Disable rea-time audio output when sound is computed by the the pl ay command.

(s-save expresson maxlen filename [:format format] [:npde mode] [:bits hitg

[:swap flag] [:play play])

Evaluates the expression, which should result in a sound or an array of sounds, and writes the
result to the given filename. A FLONUM s returned giving the maximum absolute value of al
samples written. (This is useful for normalizing sounds and detecting sample overflow.) If play is
not NI L, the sound will be output through the computer’s audio output system. (:play is not
implemented on all systems; if it isimplemented, and filenameis NI L, then this will play thefile
without also writing afile.) Thelatency (length of audio buffering) used to play the sound is 0.3s
by default, but seesnd- set - | at ency. If amultichannel sound (array) is written, the channels
are up-sampled to the highest rate in any channel so that all channels have the same sample rate.
The maximum number of samples written per channel is given by maxien, which allows writing
the initial part of a very long or infinite sound. A header is written according to format, samples
are encoded according to mode, using bits bits/sample, and bytes are swapped if swap is not NIL.
Defaults for these ae *default-sf-format*, *default-sf-node*, and
def aul t - sf-bi t s. The default for swap is NIL. The bits parameter may be 8, 16, or 32.
The values for the format and mode options are described below:

For mat
snd- head- none No header.
snd- head- Al FF AIFF format header.
snd- head- | RCAM IRCAM format header.
snd- head- NeXT 1024-byte NeXT/SUN format header followed by IRCAM header ala

CMIX. Note that the NeXT/SUN format has a header-length field, so it

Page 60

NYQUIST MANUAL

realy is legal to have a large header, even though the normal minimal
header is only 24 bytes. The additional space leaves room for maximum
amplitudes, which can be used for normalizing floating-point soundfiles,
and for other data. Nyquist follows the CMIX convention of placing an
IRCAM format header immediately after the NeXT-style header.

snd- head- Wave Microsoft Wave format header.

Mode

snd- head- node- adpcm ADPCM mode (not supported).
snd- head- node- pcm signed binary PCM mode.
snd- head- node- ul aw 8-bit U-Law mode.
snd- head- node- al aw 8-bit A-Law mode (not supported).
snd- head- node- f | oat 32-bit floating point mode.
snd- head- node- upcm unsigned binary PCM mode.
The defaults for format, mode, and bits are as follows:
NeXT and Sun machines: snd- head- NeXT, snd- head- node- pcm 16
SGI and Macintosh machines: snd- head- Al FF, snd- head- node- pcm 16

(s-read filename [:tinme-of fset offset] [:srate s] [:dur dur] [:nchans chang
[:format format] [:nobde mode] [:bits n] [:swap flag])
Reads a sound from afile. If a header is detected, the header is used to determine the format of
the file, and header information overrides format information provided by keywords (except for

Tt

me- of f set and: dur).
(s-read "nysound. snd" :srate 44100)

specifies a sample rate of 44100 hz, but if the file has a header specifying 22050 hz, the resulting
sample rate will be 22050. The parameters are:

e :time-of fset — theamount of time (in seconds) to skip from the beginning of
thefile. The defaultis0.0.

s:srate — the sample rate of the samples in the file. Default is
def aul t - sf - srat e , whichisnormally 44100.

e : dur — the maximum duration in seconds to read. Default is 10000.

* : nchans — the number of channels to read. It is assumed that samples from each
channel are interleaved. Default is 1.

e.format — the header format. See s-save for details. Default is
*def aul t - sf - f or mat *, although this parameter is currently ignored.

» : rode — the sample representation, e.g. PCM or float. See s- save for details.
Defaultis*def aul t - sf-f ornat *.

* : bits — the number of bits per sample. See s- save for details. Default is
defaul t-sf-bits.

* : swap — (T or NIL) swap byte order of each sample. Default isNIL.

If there is an error, for example if : ti me- of f set is greater than the length of the file, then
NI L is returned rather than a sound. Information about the sound is also returned by s- r ead

NYQUIST FUNCTIONS Page 61

through *r sl t *2. The list assigned to *rsl t* is of the form: (format channels mode bits
samplerate duration flags byte-offset), which are defined as follows:

» format — the header format. See s- save for details.

* channels — the number of channels.

» mode — the sample representation, e.g. PCM or float. See s- save for details.
* bits— the number of bits per sample.

» samplerate — the sample rate, expressed as a FLONUM.

« duration — the duration of the sound, in seconds.

« flags — The values for format, channels, mode, bits, samplerate, and duration are
initially just the values passed in as parameters or default valuesto s-read. If a
value is actualy read from the sound file header, a flag is set. The flags are:
snd- head- f or mat , snd- head- channel s, snd- head- node,
snd- head- bi t s, snd- head- sr at e, and snd- head- dur . For example,

(let ((flags (caddr (cddddr *rslt*))))
(not (zerop (logand flags snd-head-srate))))

tells whether the sample rate was specified in the file. Seeaso sf - i nf o below.

* byte-offset — the byte offset into the file of the first sample to be read (thisis used by
thes- overw it e and s- add- t o functions).

(s-add-to expression maxlen filename [offset])

Evaluates the expression, which should result in asound or an array of sounds, and adds the result
to the given filename. The sample rate(s) of expression must match those of the file. The
maximum number of samples written per channel is given by maxien, which alows writing the
initial part of a very long or infinite sound. If offset is specified, the new sound is added to the
file beginning at an offset from the beginning (in seconds). The file is extended if necessary to
accommodate the new addition, but if offset falls outside of the original file, the file is not
modified. (If necessary, use s- add- t o to extend the file with zeros.)

(s-overwite expression maxlen filename [offset])

Evaluates the expression, which should result in a sound or an array of sounds, and replaces
samplesin the given filename. A FLONUMis returned, giving the maximum absolute value of al
samples written. The sample rate(s) of expression must match those of the file. The maximum
number of samples written per channel is given by maxlen, which allows writing the initial part of
avery long or infinite sound. If offset is specified, the new sound is written to the file beginning
at an offset from the beginning (in seconds). Thefileis extended if necessary to accommodate the
new insert, but if offset falls outside of the origina file, the file is not modified. (If necessary, use
s- add- t o to extend the file with zeros.)

(sf-info filename)
Prints information about a sound file. The parameter filename is a string. The file is assumed to
be in *default-sf-dir* (see soundfi | enane below) unless the filename begins with **."" or
““I'". The source for this function is in the runti me and provides an example of how to
determine sound file parameters.

(soundfi | enarme name)
Converts a string name to a soundfile name. If name begins with **."" or ‘‘/'’, the name is

2Since XLISP does not support multiple value returns, multiple value returns are simulated by having the function assign
additional return values in a list to the global variable *r S| t * . Since this is a global, it should be inspected or copied
immediately after the function return to insure that return values are not overwritten by another function.

Page 62 NYQUIST MANUAL

returned without alteration. Otherwise, a path taken from * def aul t - sf - di r * is prepended to
name. The s-plot, s-read, and s- save functions al use soundfi | enane trandate
filenames.

(s-plot sound n)
Plots sound in a window. The current implementations are minimal. For the RS6000/A1X
implementation, s- pl ot simply writes time/value pairs in ascii to a file named poi nt s. dat .
Then, an xt er mis created in Tektronix emulation mode, and the Unix pl ot program is used to
plot the points. Thefiles used are:

default-plot-file The file containing the data points, defaults to "points.dat".

plotscript-file The file containing the script for the xterm defaults to
"sys/unix/rsek/plotscript”.
The script for plotting istypically something like:
graph < points.dat | plot -Ttek
This runs the Unix graph program which reads the input, scales it, and adds axes and labels. The

output is piped to the plot program which converts the graphics data into Tektronix commands.
It's crude but works well even over a serid line.

Under the Macintosh, plotting is performed using some built-in graphics commands. Select " Split Screen”
on the Control menu to get a nice areafor plotting.

Under Windows, using the NyqglDE program, plotting is built-in.
If you are interested in making a nicer plot program for any platform, please contact the author.

(s-print-tree sound)
Prints an ascii representation of the internal data structures representing a sound. This is useful
for debugging Nyquist. Identical tosnd- print-tree.

5.6. Low-level Functions

Nyquist includes many low-level functions that are used to implement the functions and behaviors
described in previous sections. For completeness, these functions are described here. Remember that
these are low-level functions that are not intended for normal use. Unless you are trying to understand the
inner workings of Nyquist, you can skip this section.

5.6.1. Creating Sounds
The basic operations that create sounds are described here.

(snd-const value tO srate duration)
Returns a sound with constant value, starting at tO with the given duration, at the sample rate
srate. You might want to use pwl (see Section 5.2.2.2) instead.

(snd-read filename offset tO format channels mode bits swap sr dur)

Loads a sound from afile with name filename. Files are assumed to consist of a header followed
by frames consisting of one sample from each channel. The format specifies the type of header,
but this information is currently ignored. Nyquist looks for a number of header formats and
automatically figures out which format to read. If a header can be identified, the header is first
read from the file. Then, the file pointer is advanced by the indicated offset (in seconds). If there
is an unrecognized header, Nyquist will assume the file has no header. If the header size is a
multiple of the frame size (bytes/sample * number-of-channels), you can use offset to skip over
the header. To skip N bytes, use an offset of:

(/ (float N) sr (/ bits 8) channels)
If the header is not a multiple of the frame size, either write a header or contact the author

NYQUIST FUNCTIONS Page 63

(dannenberg@cs.cmu.edu) for assistance. Nyquist will round offset to the nearest sample. The
resulting sound will start at time t0. If a header is found, the file will be interpreted according to
the header information. If no header was found, channels tells how many channels there are, the
samples are encoded according to mode, the sample length is bits, and sr is the sample rate. The
swap flag is 0 or 1, where 1 means to swap sample bytes. The duration to be read (in seconds) is
given by dur. If dur islonger than the datain the file, then a shorter duration will be returned. If
the file contains one channel, a sound is returned. If the file contains 2 or more channels, an array
of sounds is returned. Note: you probably want to call s-read (see Section 5.5) instead of
snd- r ead. Also, see Section 5.5 for information on the mode and format parameters.

(snd-save expression maxlen filename format mode bits swap play)

Evaluates the expression, which should result in a sound or an array of sounds, and writes the
result to the given filename. If a multichannel sound (array) is written, the channels are up-
sampled to the highest rate in any channel so that all channels have the same sample rate. The
maximum number of samples written per channel is given by maxlen, which allows writing the
initial part of a very long or infinite sound. A header is written according to format, samples are
encoded according to mode, using hits bits/sample, and swapping bytes if swap is 1 (otherwise it
should be 0). If play is not null, the audio is played in real time (to the extent possible) as it is
computed. Note: you probably want to call s- save (see Section 5.5) instead. The format and
mode parameters are described in Section 5.5.

(snd-overwite expression maxlen filename byte-offset mode bits swap sr channels)
Evaluates the expression, which should result in a sound or an array of sounds, and replaces
samples in the given filename. The sample rate(s) of expression must match those of the file and
the parameter sr. Thefileis not read to determine its format, so it is essential to specify the proper
parameters. byte-offset is the offset in bytes of the first sound sample to be written, mode is the
representation (see snd- save), bits is the number of bits per sample, swap is O or 1, where 1
means to swap sample bytes, sr is the sample rate, and channels is the number of channels. If
these do not match the parameters for filename, it islikely that filename will be corrupted. Up to a
maximum of maxlen samples will be written per channel. Use s- add-t o (in Section 5.5 or
s-overwrite (in Section 5.5 instead of this function.

(snd-coterm sl 2)

Returns a copy of sl, except the start time is the maximum of the start times of sl and s2, and the
termination time is the minimum of sl and s2. (After the termination time, the sound is zero as if
sl is gated by s2.) Some rationale follows: In order to implement s- add- t o, we need to read
from the target sound file, add the sounds to a new sound, and overwrite the result back into the
file. We only want to write as many samples into the file as there are samples in the new sound.
However, if we are adding in samples read from the file, the result of asnd- add in Nyquist will
have the maximum duration of either sound. Therefore, we may read to the end of the file. What
we need is a way to truncate the read, but we cannot easily do that, because we do not know in
advance how long the new sound will be. The solution isto use snd- cot er m which will allow
us to truncate the sound that is read from the file (s1) according to the duration of the new sound
(s2). When this truncated sound is added to the new sound, the result will have only the duration
of the new sound, and this can be used to overwrite the file. This function is used in the
implementation of s- add-t o, whichisdefinedinrunti nme/fil ei o. 1 sp.

(snd-fromarray ..)
See page 36.

(snd-white tO sr d)
Generate white noise, starting at t0, with sample rate sr, and duration d. You probably want to
usenoi se (see Section 5.2.2.4).

(snd-zero tO srate)
Creates a sound that is zero everywhere, starts at t0, and has sample rate srate. The logical stop
timeisimmediate, i.e. also at t0. You probably want to use pw (see Section 5.2.2.2) instead.

Page 64 NYQUIST MANUAL

(get-slider-val ue index)
Return the current value of the dlider named by index (an integer index into the array of diders).
Note that this ‘‘slider’’ is just a floating point value in an array. Sliders can be changed by OSC
messages (see osc- enabl e) and by sending character sequences to Nyquist’s standard input.
(Normally, these character sequences would not be typed but generated by the jNyqglDE
interactive devel opment environment, which runs Nyquist as a sub-process, and which present the
user with graphical dliders.)

(snd-slider index tO srate duration)

Create a sound controlled by the slider named by index (an integer index into the array of diders;
see get - sl i der - val ue for more information). The function returns a sound. Since Nyquist
sounds are computed in blocks of samples, and each block is computed at once, each block will
contain copies of the current slider value. To obtain reasonable responsiveness, slider sounds
should have high (audio) sample rates so that the block rate will be reasonably high. Also,
consider lowering the audio latency using snd-set -1 atency. To ‘‘trigger’” a Nyquist
behavior using slider input, seethet r i gger function in Section 5.4.

5.6.2. Signal Operations
This next set of functions take sounds as arguments, operate on them, and return a sound.

(snd- abs sound)
Computes a new sound where each sample is the absolute value of the corresponding sample in
sound. Y ou should probably use s- abs instead. (See Section 5.2.2.4.)

(snd-sqgrt sound)
Computes a new sound where each sample is the sguare root of the corresponding sample in
sound. If a sample is negative, it is taken to be zero to avoid raising a floating point error. Y ou
should probably uses- sqrt instead. (See Section 5.2.2.4.)

(snd- add soundl sound)
Adds two sounds. The resulting start time is the minimum of the two parameter start times, the
logical stop time is the maximum of the two parameter stop times, and the sample rate is the
maximum of the two parameter sample rates. Use si mor suminstead of snd- add (see Section
5.4).

(snd- of f set sound offset)
Add an offset to a sound. The resulting start time, logical stop time, stop time, and sample rate are
those of sound. Use suminstead (see Section 5.4).

(snd-avgsound blocksize stepsize operation)
Computes the averages or peak values of blocks of samples. Each output sample is an average or
peak of blocksize (a fixnum) adjacent samples from the input sound. After each average or peak
is taken, the input is advanced by stepsize, a fixnum which may be greater or less than blocksize.
The output sample rate is the sound (input) sample rate divided by stepsize. This function is
useful for computing low-sample-rate rms or peak amplitude signals for input to snd- gat e or
snd-f ol | ow. To select the operation, operation should be one of OP- AVERAGE or OP- PEAK.
(These are global lisp variables, the actual operation parameter is an integer.) For RMS
computation, seer s in Section 5.2.2.4.

(snd-clip sound peak)
Hard limit sound to the given peak, a positive number. The samples of sound are constrained
between an upper value of peak and a lower value of —()peak. Use cl i p instead (see Section
5.2.2.4).

(snd-conpose f Q)
Compose two signals, i.e. compute f(g(t)), where f and g are sounds. This function is used
primarily to implement time warping, but it can be used in other applications such as frequency

NYQUIST FUNCTIONS Page 65

modulation. For each sample x in g, snd-compose looks up the value of f(x) using linear
interpolation. The resulting sample rate, start time, etc. are taken from g. The sound f isused in
effect as a lookup table, but it is assumed that g is non-decreasing, so that f is accessed in time
order. This allows samples of f to be computed and discarded incrementally. If in fact g
decreases, the current sample of g isreplaced by the previous one, forcing g into compliance with
the non-decreasing restriction. Seeaso sr ef , shape, andsnd-r esanpl e.

For an extended example that uses snd-conpose for variable pitch shifting, see
denos/ pi t ch_change. ht m

(snd-tapv sound offset vardelay maxdelay)
A variable delay: sound is delayed by the sum of offset (a FIXNUM or FLONUM) and vardelay
(a SOUND). The specified delay is adjusted to lie in the range of zero to maxdelay seconds to
yield the actual delay, and the delay is implemented using linear interpolation. This function was
designed specifically for use in a chorus effect: the offset is set to half of maxdelay, and the
vardelay input is a slow sinusoid. The maximum delay is limited to maxdelay, which determines
the length of afixed-sized buffer.

(snd-tapf sound offset vardelay maxdelay)
A variable delay like snd-tapv except there is no linear interpolation. By eliminating
interpolation, the output is an exact copy of the input with no filtering or distortion. On the other
hand, delays jump by samples causing samples to double or skip even when the delay is changed
smoothly.

(snd- copy sound)
Makes a copy of sound. Since operators always make (logical) copies of their sound parameters,
this function should never be needed. Thisfunction is here for debugging.

(snd- down srate sound)
Linear interpolation of samples down to the given sample rate srate, which must be lower than
the sample rate of sound. Do not call this function. Nyquist performs sample-rate conversion
automatically as needed. If you want to force a conversion, call f or ce- sr at e (see Section
5.2.2).

(snd-exp sound)
Compute the exponentia of each sample of sound. Use s- exp instead (see Section 5.2.2.4).

(snd-f ol | owsound floor risetime falltime lookahead)
An envelope follower. The basic goal of this function is to generate a smooth signal that rides on
the peaks of the input signal. The usual objective is to produce an amplitude envelope given a
low-sample rate (control rate) signal representing local RMS measurements. The first argument is
the input signal. The floor is the minimum output value. The risetime is the time (in seconds) it
takes for the output to rise (exponentialy) from floor to unity (1.0) and the falltime is the time it
takes for the output to fall (exponentially) from unity to floor. The algorithm looks ahead for
peaks and will begin to increase the output signal according to risetime in anticipation of a peak.
The amount of anticipation (in sampless) is given by lookahead. The algorithm is as follows: the
output value is allowed to increase according to risetime or decrease according to falltime. If the
next input sample is in this range, that sample is simply output as the next output sample. If the
next input sample is too large, the algorithm goes back in time as far as necessary to compute an
envelope that rises according to risetime to meet the new value. The algorithm will only work
backward as far as lookahead. If that is not far enough, then there is a final forward pass
computing arising signal from the earliest output sample. In this case, the output signal will be at
least momentarily less than the input signal and will continue to rise exponentialy until it
intersects the input signal. If the input signal falls faster than indicated by falltime, the output fall
rate will be limited by falltime, and the fall in output will stop when the output reaches floor. This
algorithm can make two passes througth the buffer on sharply rising inputs, so it is not
particularly fast. With short buffers and low sample rates this should not matter. See snd- avg
above for a function that can help to generate a low-sample-rate input for snd- f ol | ow. See

Page 66 NYQUIST MANUAL

snd- chase in Section 5.6.3 for arelated filter.

(snd-gat e sound lookahead risetime falltime floor threshold)

This function generates an exponential rise and decay intended for noise gate implementation.
The decay starts when the signal drops below threshold and stays there for longer than lookahead.
Decay continues until the value reaches floor, at which point the decay stops and the output value
is held constant. Either during the decay or after the floor is reached, if the signal goes above
threshold, then the output value will rise to unity (1.0) at the point the signal crosses the
threshold. Again, look-ahead is used, so the rise actually starts before the signal crosses the
threshold. The rise is a constant-rate exponential and set so that a rise from floor to unity occurs
in risetime. Similarly, the fall is a constant-rate exponential such that a fall from unity to floor
takes falltime. The result is delayed by lookahead, so the output is hot actually synchronized with
the input. To compensate, you should drop the initial lookahead of samples. Thus, snd- gat e is
not recommended for direct use. Use gat e instead (see Section 5.1.4).

(snd-inverse signal start srate)

Compute the function inverse of signal, that is, compute g(t) such that signal(g(t)) = t. This
function assumes that signal is non-decreasing, it uses linear interpolation, the resulting sample
rate is srate, and the result is shifted to have a starting time of start. If signal decreases, the true
inverse may be undefined, so we define snd- i nver se operationally as follows: for each output
time point t, scan ahead in signal until the value of signal exceedst. Interpolate to find an exact
time point x from signal and output x at timet. This function is intended for internal system use
in implementing time warps.

(snd-1 og sound)
Compute the natural logorithm of each sample of sound. Use s-1 og instead (see Section
5.2.2.4).

(peak expression maxien)
Compute the maximum absolute value of the amplitude of a sound. The sound is created by
evaluating expression (as in s-save). Only the first maxlen samples are evaluated. The
expression is automaticaly quoted (peak is a macro), so do not quote this parameter. If
expression is a variable, then the global binding of that variable will be used. Also, since the
variable retains a reference to the sound, the sound will be evaluated and left in memory. See
Section 4.3 on page 27 for examples.

(snd- max expression maxlen)
Compute the maximum absolute value of the amplitude of a sound. The sound is created by
evaluating expression (as in snd- save), which is therefore normally quoted by the caller. At
most maxien samples are computed. The result is the maximum of the absolute values of the
samples. Notes: It is recommended to use peak (see above) instead. |If you want to find the
maximum of a sound bound to a local variable and it is acceptable to save the samples in
memory, then thisis probably the function to call. Otherwise, use peak.

(snd- maxv soundl sound2)

Compute the maximum of soundl and sound2 on a sample-by-sample basis. The resulting sound
has its start time at the maximum of the input start times and a logical stop at the minimum
logical stop of the inputs. The physical stop time is the minimum of the physical stop times of the
two sounds. Note that this violatesthe ‘*normal’’ interpretation that sounds are zero outside their
start and stop times. For example, even if soundl extends beyond sound2 and is greater than
zero, the result value in this extension will be zero because it will be after the physical stop time,
whereas if we simply treated sound2 as zero in this region and took the maximum, we would get a
non-zero result. Use s- max instead (see Section 5.2.2.4).

(snd-normal i ze sound)
Internally, sounds are stored with a scale factor that applies to all samples of the sound. All
operators that take sound arguments take this scale factor into account (although it is not aways
necessary to perform an actua multiply per sample), so you should never need to call this

NYQUIST FUNCTIONS Page 67

function. This function multiplies each sample of a sound by its scale factor, returning a sound
that represents the same signal, but whose scale factor is 1.0.

(snd- oneshot sound threshold ontime)
Computes a new sound that is zero except where sound exceeds threshold. From these points, the
result is 1.0 until sound remains below threshold for ontime (in seconds). The result has the same
samplerate, start time, logical stop time, and duration as sound.

(snd- prod soundl sound2)
Computes the product of soundl and sound2. The resulting sound has its start time at the
maximum of the input start times and a logical stop at the minimum logical stop of the inputs.
Do not use this function. Usenul t or pr od instead (see Section 5.2.2). Sample rate, start time,
etc. are taken from sound.

(snd-pw tO sr lis)

Computes a piece-wise linear function according to the breakpointsin lis. The starting time is t0,
and the sample rate is sr. The breakpoints are passed in an XLISP list (of type LVAL) where the
list alternates sample numbers (FI XNUMs, computed in samples from the beginning of the pwil
function) and values (the value of the pwl function, given as a FLONUM. There is an implicit
starting point of (0, 0). The list must contain an odd number of points, the omitted last value
being implicitly zero (0). The list is assumed to be well-formed. Do not cal this function. Use
pw instead (see Section 5.2.2.2).

(snd-quanti ze sound steps)
Quantizes a sound. See Section 5.2.2.4 for details.

(snd-reci p sound)
Compute the reciprocal of each sample of sound. User eci p instead (see Section 5.2.2.4).

(snd-resanpl e f rate)
Resample sound f using high-quality interpolation, yielding a new sound with the specified rate.
The result is scaled by 0.95 because often, in resampling, interpolated values exceed the original
sample values, and this could lead to clipping. The resulting start time, etc. are taken from f. Use
resanpl e instead.

(snd-resanpl ev f rate Q)

Compose two signdls, i.e. compute f(g(t)), where f and g are sounds. The result has sample rate
given by rate. At each time t (according to the rate), g is linearly interpolated to yield an
increasing sequence of high-precision score-time values. f is then interpolated at each value to
yield a result sasmple. If in fact g decreases, the current sample of g is replaced by the previous
one, forcing g into compliance with the non-decreasing restriction. The result is scaled by 0.95
because often, in resampling, interpolated values exceed the original sample values, and this
could lead to clipping. Note that if g has a high sample rate, this may introduce unwanted jitter
into sample times. See sound- war p for a detailed discussion. See snd- conpose for afast,
low-quality alternative to this function. Normally, you should use sound- war p instead of this
function.

(snd-scal e scale sound)
Scales the amplitude of sound by the factor scale. Usescal e instead (see Section 5.2.2).

(snd-shape signal table origin)
A waveshaping function. This is the primitive upon which shape is based. The snd- shape
function islike shape except that signal and table must be (single-channel) sounds. Use shape
instead (see Section 5.2.2.3).

(snd-up srate sound)
Increases sample rate by linear interpolation. The sound is the signal to be up-sampled, and srate
is the output sample rate. Do not call this function. Nyquist performs sample-rate conversion
automatically as needed. If you want to force a conversion, call f or ce- sr at e (see Section
5.2.2).

Page 68 NYQUIST MANUAL

(snd- xform sound sr time start stop scale)

Makes a copy of sound and then dters it in the following order: (1) the start time (snd-t 0) of
the sound is shifted to time, (1) the sound is stretched as a result of setting the sample rate to sr
(the start time is unchanged by this), (3) the sound is clipped from start to stop, (4) if start is
greater than time, the sound is shifted shifted by time - start, so that the start time is time, (5) the
sound is scaled by scale. An empty (zero) sound at time will be returned if all samples are
clipped. Normally, you should accomplish al this using transformations. A transformation
applied to a sound has no effect, so use cue to create atransformable sound (see Section 5.2.1).

(snd-yin sound minstep maxstep rate)
Identical toyi n. See Section 5.2.2.4.

5.6.3. Filters
These are also ‘*Signal Operators,”’ the subject of the previous section, but there are so many filter
functions, they are documented in this special section.

Some filters allow time-varying filter parameters. In these functions, filter coefficients are calculated at
the sample rate of the filter parameter, and coefficients are not interpol ated.

(snd- al pass sound delay feedback)
An al-pass filter. This produces a repeating echo effect without the resonances of snd- del ay.
The feedback should be less than one to avoid exponential amplitude blowup. Delay is rounded
to the nearest sample. You should use al pass instead (see Section 5.2.2.3).

(snd- al passcv sound delay feedback)
An all-pass filter with variable feedback. Thisisjust like snd-alpass except feedback is a sound.
You should use al pass instead (see Section 5.2.2.3).

(snd-al passvv sound delay feedback maxdelay)
An all-pass filter with variable feedback and delay. This is just like snd-alpass except feedback
and delay are sounds, and there is an additional FLONUM parameter, maxdelay, that gives an
upper bound on the value of delay. Note: delay must remain between zero and maxdelay. If not,
results are undefined, and Nyquist may crash. You should use al pass instead (see Section
5.2.2.3).

(snd-areson sound hz bw normalization)
A notch filter modeled after the ar eson unit generator in Csound. The snd- ar eson filter is
an exact complement of snd-r eson such that if both are applied to the same signal with the
same parameters, the sum of the results yeilds the original signal. Note that because of this
complementary design, the power is not normalized as in snd-reson. See snd-reson for
details on normalization. Y ou should use ar eson instead (see Section 5.2.2.3).

(snd-aresoncv sound hz bw normalization)
This function is identical to snd- ar eson except the bw (bandwidth) parameter is a sound.
Filter coefficients are updated at the sample rate of bw. The “‘cv’’ suffix stands for Constant,
Variable, indicating that hz and bw are constant (a number) and variable (a sound), respectively.
This naming convention is used throughout. You should use ar eson instead (see Section
5.2.2.3).

(snd-aresonvc sound hz bw normalization)
Thisfunction isidentical to snd- ar eson except the hz (center frequency) parameter is a sound.
Filter coefficients are updated at the sample rate of hz. You should use ar eson instead (see
Section 5.2.2.3).

(snd-aresonvv sound hz bw normalization)
Thisfunction isidentical to snd- ar eson except both hz (center frequency) and bw (bandwidth)
are sounds. Filter coefficients are updated at the next sample of either hz or bw. You should use

NYQUIST FUNCTIONS Page 69

ar eson instead (see Section 5.2.2.3).

(snd-at one sound hz)
A high-pass filter modeled after the at one unit generator in Csound. The snd- at one filter is
an exact complement of snd- t one such that if both are applied to the same signal with the same
parameters, the sum of the results yeilds the original signal. You should use hp instead (see
Section 5.2.2.3).

(snd-at onev sound hz)
Thisisjust like snd- at one except that the hz cutoff frequency is a sound. Filter coefficients
are updated at the sample rate of hz. Y ou should use hp instead (see Section 5.2.2.3).

(snd- bi quad sound b0 bl b2 al a2 Zzlinit Z2init)

A general second order IIR filter, where a0 is assumed to be unity. For al and a2, the sign
convention is opposite to that of Matlab. All parameters except the input sound are of type
FLONUM Y ou should probably use one of | owpass2, hi ghpass2, bandpass2, not ch2,
al | pass2, eqg-lowshel f, eg-highshelf, eg-band, |owass4, |owassé,
| owpass8, hi ghpass4, hi ghpass6, or hi ghpass8, which areall based on snd- bi quad
and described in Section 5.2.2.3. For completeness, you will also find bi quad and bi quad- m
described in that section.

(snd-chase sound risetime falltime)

A dew rate limiter. The output ‘‘chases’’ the input at rates determined by risetime and falltime.
If the input changes too fast, the output will lag behind the input. Thisis a form of lowpass filter,
but it was created to turn hard-switching square waves into smoother control signals that could be
used for linear crossfades. If the input switches from O to 1, the output will linearly riseto 1 in
risetime seconds. If the input switches from 1 to O, the output will linearly fall to O in falltime
seconds. The generated slope is constant; the transition is linear; thisis not an exponential rise or
fall. The risetime and falltime must be scalar constants; complain to the author if this is not
adequate. The snd- chase function is safe for ordinary use. See snd- f ol | owin Section 5.6.2
for arelated function.

(snd-congen gate risetime falltime)

A simple ‘‘contour generator’’ based on analog synthesizers. The gate is a sound that normally
steps from 0.0 to 1.0 at the start of an envelop and goes from 1.0 back to 0.0 at the beginning of
the release. At each sample, the output converges to the input exponentially. If gate is greater
than the output, e.g. the attack, then the output converges half-way to the output in risetime. If
the gate is less than the output, the half-time is falltime. The sample rate, starting time, logical-
stop-time, and terminate time are taken from gate. Y ou should use congen instead (see Section
5223

(snd-convol ve sound response)
Convolves sound by response using a simple O(N x M) agorithm. The sound can be any length,
but the response is computed and stored in atable. The required compuation time per sample and
total space are proportional to the length of response. Use convol ve instead (see Section
5.2.2.3).

(snd-del ay sound delay feedback)
Feedback delay. The output, initially sound, is recursively delayed by delay, scaled by feedback,
and added to itself, producing an repeating echo effect. The feedback should be less than one to
avoid exponential amplitude blowup. Delay is rounded to the nearest sample. You should use
f eedback- del ay instead (see Section 5.2.2.3)

(snd-del aycv sound delay feedback)
Feedback delay with variable feedback. This is just like snd-delay except feedback is a sound.
You should usef eedback- del ay instead (see Section 5.2.2.3).

(snd-reson sound hz bw normalization)
A second-order resonating (bandpass) filter with center frequency hz and bandwidth bw, modeled

Page 70 NYQUIST MANUAL

after ther eson unit generator in Csound. The normalization parameter must be an integer and
(like in Csound) specifies a scaling factor. A value of 1 specifies a peak amplitude response of
1.0; all frequencies other than hz are attenuated. A value of 2 specifies the overall RMS value of
the amplitude response is 1.0; thus filtered white noise would retain the same power. A value of
zero specifies no scaling. The result sample rate, start time, etc. are takend from sound. You
should user eson instead (see Section 5.2.2.3).

(snd-resoncv sound hz bw normalization)
This function is identical to snd- r eson except bw (bandwidth) is a sound. Filter coefficients
are updated at the sample rate of bw. You should user eson instead (see Section 5.2.2.3).

(snd-resonvc sound hz bw normalization)
This function is identical to snd-reson except hz (center frequency) is a sound. Filter
coefficients are updated at the sample rate of hz. You should use r eson instead (see Section
5.2.2.3).

(snd-resonvv sound hz bw normalization)
This function isidentical to snd- r eson except botth hz (center frequency) and bw (bandwidth)
are sounds. Filter coefficients are updated at the next sample from either hz or bw. Y ou should
user eson instead (see Section 5.2.2.3).

(snd-tone sound hz)
A first-order recursive low-pass filter, based on the tone unit generator of Csound. The hz
parameter is the cutoff frequency, the response curve's half-power point. The result sample rate,
start time, etc. are takend from sound. Y ou should usel p instead (see Section 5.2.2.3).

(snd-tonev sound hz)
This function is identical to snd-t one except hz (cutoff frequency) is a sound. The filter
coefficients are updated at the sample rate of hz. Y ou should use | p instead (see Section 5.2.2.3).

5.6.4. Table-L ookup Oscillator Functions

These functions all use a sound to describe one period of a periodic waveform. In the current
implementation, the sound samples are copied to an array (the waveform table) when the function is
called. To make a table-lookup oscillator generate a specific pitch, we need to have several pieces of
information:

» A waveform to put into the table. This comes from the sound parameter.

» Thelength (in samples) of the waveform. Thisis obtained by reading samples (starting at the
sound’s start time, not necessarily at time zero) until the physical stop time of the sound. (If
you read the waveform from afile or generate it with functions like si mand si ne, then the
physical and logical stop times will be the same and will correspond to the duration you
specified, rounded to the nearest sample.)

The intrinsic sample rate of the waveform. This sample rate is simply the sample rate
property of sound.

The pitch of the waveform. Thisis supplied by the step parameter and indicates the pitch (in
steps) of sound. You might expect that the pitch would be related to the period (length) of
sound, but there is the interesting case that synthesis based on sampling often loops over
multiple periods. This means that the fundamental frequency of a generated tone may be
some multiple of the looping rate. In Nyquist, you always specify the perceived pitch of the
looped sound if the sound is played at the sound’s own sample rate.

The desired pitch. Thisis specified by the hz parameter in Hertz (cycles per second) in these
low-level functions. Note that this is not necessarily the ‘‘loop’” rate at which the table is
scanned. Instead, Nyquist figures what sample rate conversion would be necessary to
“‘transpose’’ from the step which specifies the original pitch of sound to hz, which gives the

NYQUIST FUNCTIONS Page 71

desired pitch. The mixed use of steps and Hertz came about because it seemed that sample
tables would be tagged with steps (‘1 sampled amiddle-C'’), whereas frequency deviation in
thef nosc function islinear, thus calling for a specification in Hertz.

» The desired samplerate. Thisisgiven by the sr parameter in Hertz.

Other parameters common to all of these oscillator functions are:
* 10, the starting time, and

* phase, the starting phase in degrees. Note that if the step parameter indicates that the table
holds more than one fundamental period, then a starting phase of 360 will be different than a
starting phase of 0.

(snd-anosc sound step s hz tO am phase)
An oscillator with amplitude modulation. The sound am specifies the amplitude and the logical
stop time. The physical stop timeis also that of am. Y ou should use anpsc instead (see Section
5.22.1).

(snd-fnosc s step sr hz t0O fm phase)
A Frequency Modulation oscillator. The sound fm specifies frequency deviation (in Hertz) from
hz. You should use f nbsc instead (see Section 5.2.2.1).

(snd-buzz n s hz t0O fm)
A buzz oscillator, which generates n harmonics of equal amplitude. The fm specifies frequency
deviation (in Hertz) from hz. Y ou should use buzz instead (see Section 5.2.2.1).

(snd-pluck sr hz t0 d final-amp)
A Karplus-Strong plucked string oscillator with sample rate sr, fundamental frequency hz,
starting time tO, duration d, initial amplitude approximately 1.0 (not exact because the string is
initialized with random values) and final amplitude approximately final-amp. You should use
pl uck instead (see Section 5.2.2.1).

(snd-osc s step sr hz tO d phase)
A simple table lookup oscillator with fixed frequency. The duration is d seconds. Y ou should
use osc instead (see Section 5.2.2.1).

(snd-partial s hz tO env)
Thisis a specia case of snd- anpsc that generates a sinusoid starting at phase 0 degrees. The
env parameter gives the envelope or any other amplitude modulation. You should use parti al
instead (see Section 5.2.2.1).

(snd-sine t0 hz s d)
This is a specia case of snd- osc that always generates a sinusoid with initial phase of 0
degrees. You should use si ne instead (see Section 5.2.2.1).

(snd-si osc tables sr hz tO fm)

A Spectral Interpolation Oscillator with frequency modulation. The tablesis a list of sounds and
sample counts as follows: (table0 countl tablel ... countN tableN). The initial waveform is given
by table0, which is interpolated linearly to tablel over the first countl samples. From countl to
count2 samples, the waveform is interpolated from tablel to table2, and so on. |f more than
countN samples are generated, tableN is used for the remainder of the sound. The duration and
logical stop time of the sound is taken from fm, which specified frequency modulation (deviation)
in Hertz. You should use si osc instead (see Section 5.2.2.1).

Page 72 NYQUIST MANUAL

5.6.5. Physical Model Functions
These functions perform some sort of physically-based modeling synthesis.

(snd-cl arinet freq breath-env sr)
A clarinet model implemented in STK. The freq is a FLONUMin Hertz, breath-env is a SOUND
that ranges from zero to one, and sr is the desired sample rate (a FLONUM. You should use
cl ari net instead (see Section 5.2.2).

(snd-clarinet-freq freq breath-env freg-env sr)
A clarinet model just like snd- cl ari net but with an additional parameter for continuous
frequency control. You should usecl ari net - f r eq instead (see Section 5.2.2).

(snd-clarinet-all freq vibrato-freq vibrato-gain freg-env breath-env reed-stiffness noise
sr)
A clarinet model just like snd-cl ari net - freq but with additional parameters for vibrato
generation and continuous control of reed dtiffness and breath noise. You should use
clarinet-all instead (see Section 5.2.2).

(snd-sax freq breath-env sr)
A sax model implemented in STK. The freq is a FLONUMin Hertz, breath-env is a SOUND that
ranges from zero to one, and s is the desired sample rate (a FLONUM. You should use sax
instead (see Section 5.2.2).

(snd-sax-freq freq freg-env breath-env sr)
A sax model just like snd- sax but with an additional parameter for continuous frequency
control. You should use sax- f r eq instead (see Section 5.2.2).

(snd-sax-al |l freq vibrato-freq vibrato-gain freg-env breath-env reed-stiffness noise blow-pos
reed-table-offset sr)
A sax model just like snd- sax- f r eq but with additional parameters for vibrato generation and
continuous control of reed stiffness, breath noise, excitation position, and reed table offset. You
should usesax- al | instead (see Section 5.2.2).

5.6.6. Sequence Support Functions
The next two functions are used to implement Nyquist’s seq construct.

(snd-seq sound closure)
This function returns sound until the logical stop time of sound. Then, the XLISP closure is
evaluated, passing it the logical stop time of sound as a parameter. The closure must return a
sound, which is then added to sound. (An add is used so that sound can continue past its logical
stop if desired.) Do not call thisfunction. See seq in Section 5.4.

(snd-rmul ti seq array closure)
This function is similar to snd- seq except the first parameter is a multichannel sound rather
than a single sound. A multichannel sound is simply an XLISP array of sounds. An array of
sounds is returned which is the sum of array and another array of sounds returned by closure.
The closure is passed the logica stop time of the multichannel sound, which is the maximum
logical stop time of any element of array. Do not call thisfunction. See seq in Section 5.4.
(snd-trigger s closure)
This is one of the only ways in which a behavior instance can be created by changesin a signal. When s
(a SOUND) makes a transition from less than or equal to zero to greater than zero, the closure, which takes
a starting time parameter, is evaluated. The closure must return a SOUND. The sum of all these soundsiis
returned. If there are no sounds, the result will be zero. The stop time of the result is the maximum stop
time of sand all sounds returned by the closure. The sample rate of the return value is the sample rate of
s, and the sounds returned by the closure must all have that same sample rate. Do not call this function.
Seetrigger in Section 5.4.

NYQUIST FUNCTIONS Page 73

An implementation note: There is ho way to have snd-tri gger return a multichannel sound. An
aternative implementation would be a built-in function to scan ahead in a sound to find the time of the
next zero crossing. This could be combined with some LISP code similar to seq to sum up instances of
the closure. However, this would force arbitrary look-ahead and therefore would not work with real-time
inputs, which was the motivation for snd- t ri gger inthefirst place.

Page 74 NY QUIST MANUAL

NYQUIST GLOBALS Page 75

6. Nyquist Globals

There are many global variablesin Nyquist. A convention in Lisp isto place asterisks (*) around global
variables, e.g. *t abl e*. Thisisonly aconvention, and the asterisks are just like any other letter as far as
variable names are concerned. Here are some global s users should know about:

t abl e Default table used by osc and other oscillators.

Ad- Hert z Frequency of A4 in Hertz.. Note: you must call (set - pi t ch- nanmes)
to recompute pitches after changing * A4- Her t z*.

*aut onor nt The normalization factor to be applied to the next sound when
aut onor mtype is’ previ ous. See Sections 4.3 and 5.5.

aut onor nf | ag Enables the automatic normalization feature of the pl ay command. You

should use (autonornton) and (autonorm of f) rather than
setting * aut onor nf | ag* directly. See Sections 4.3 and 5.5.

aut onor m max- sanpl es
Specifies how many samples will be computed searching for a peak
value when *aut onor mt ype* is’' | ookahead. See Sections 4.3
and 5.5.

aut onor m pr evi ous- peak
The peak of the previous sound generated by pl ay. This is used to
compute the scale factor for the next sound when * aut onor m t ype*
is’ previ ous. See Sections 4.3 and 5.5.

*aut onormt ar get * The target peak amplitude for the autonorm feature. The default value is
0.9. See Sections 4.3 and 5.5.

aut onor mtype Determines how the autonorm feature is implemented. Valid values are
" | ookahead (the default) and’ pr evi ous. See Sections 4.3 and 5.5.

pbr eakenabl e Controls whether XLISP enters a break loop when an error is
encountered. See Section IV.14.

control -srate Part of the environment, establishes the control sample rate. See Section
2.1 for details.

*default-sf-bits**default-sf-bits
The default bits-per-sample for sound files. Typically 16.

defaul t-sf-dir The default sound file directory. Unless you give a full path for afile,
audio files are assumed to be in this directory.

def aul t - sf-format The default sound file format. When you write a file, this will be the
default format: AIFF for Mac and most Unix systems, NeXT for NeXT
systems, and WAV for Win32.

def aul t - sf - srat e The default sample rate for sound files. Typically 44100.0, but often set
to 22050.0 for speed in non-critical tasks.

defaul t-control -srate
Default valuefor *cont r ol - srat e*. Thisvalueis restored when you
execute (t op) to pop out of a debugging session. Change it by calling
(set-control -srate value).

def aul t - sound- sr at e Default value for *sound- sr at e*. This value is restored when you
execute (t op) to pop out of a debugging session. Change it by calling
(set-sound-srate value).

file-separator® The character that separates directories in a path, eg. “‘/ "’ for Unix,
‘v for Mac, and ‘‘\'"" for Win32. This is normaly set in

Page 76

rslt

sound- sr at e

soundenabl e

t racenabl e
XLISP variables
Environment variables

Various constants

NYQUIST MANUAL

system | sp.

When a function returns more than one value, *r sl t * is set to alist of
the “‘extra’ values. This provides a make-shift version of the
mul ti pl e-val ue-r et ur n facility in Common Lisp.

Part of the environment, establishes the audio sample rate. See Section
2.1 for details.

Controls whether writes to a sound file will also be played as audio. Set
thisvariable by calling (sound- on) or (sound- of f) .

Controls whether XLISP prints a backtrace when an error is encountered.
See Section V.14 for alist of global variables defined by XLISP.

See Section 2.1 for definitions of variables used in the environment for
behaviors. In general, you should never set or access these variables
directly.

See Section 1.4 for definitions of predefined constants for loudness,
duration, and pitch.

TIME/FREQUENCY TRANSFORMATION Page 77

7. Time/Frequency Transformation

Nyquist provides functions for FFT and inverse FFT operations on streams of audio data. Because
sounds can be of any length, but an FFT operates on a fixed amount of data, FFT processing is typically
done in short blocks or windows that move through the audio. Thus, a stream of samples is converted in
to a sequence of FFT frames representing short-term spectra.

Nyquist does not have a specia data type corresponding to a sequence of FFT frames. This would be
nice, but it would require creating a large set of operations suitable for processing frame sequences.
Another approach, and perhaps the most ** pure’” would be to convert a single sound into a multichannel
sound, with one channel per bin of the FFT.

Instead, Nyquist violates its ‘‘pure’’ functional model and resorts to objects for FFT processing. A
sequence of frames is represented by an XLISP object. Whenever you send the selector : next to the
object, you get back either NIL, indicating the end of the sequence, or you get an array of FFT
coefficients.

The Nyquist function snd-f ft (mnemonic, isn’t it?) returns one of the frame sequence generating
objects. You can pass any frame sequence generating object to ancther function, snd- i f f t, and turn the
seguence back into audio.

Withsnd-fft andsnd-ifft, you can create al sorts of interesting processes. The main ideais to
create intermediate objects that both accept and generate sequences of frames. These objects can operate
on the frames to implement the desired spectral-domain processes. Examples of this can be found in the
file fft_tutorial.htm which is part of the standard Nyquist release. The documentation for
snd-fft andsnd-ifft follows.

(snd-fft sound length skip window)

This function performs an FFT on the first samples in sound and returns a Lisp array of
FLONUMs. The function modifies the sound, violating the normal rule that sounds are immutable
in Nyquist, so it is advised that you copy the sound using snd- copy if there are any other
references to sound. The length of the FFT is specified by length, a FI XNUM (integer). After each
FFT, the sound is advanced by skip samples, also of type FI XNUM Overlapping FFTs, where
skip is less than length, are allowed. If window is not NI L, it must be a sound. The first length
samples of window are multiplied by length samples of sound before performing the FFT. When
there are no more samples in sound to transform, this function returns NI L. The coefficients in
the returned array, in order, are the DC coefficient, the first real, the first imaginary, the second
real, the second imaginary, etc. If the length is even, the last array element corresponds to the real
coefficient at the Nyquist frequency.

(snd-ifft time srate iterator skip window)
This function performs an IFFT on a sequence of spectral frames obtained from iterator and
returns a sound. The start time of the sound is given by time. Typically, this would be computed
by caling (1 ocal -t o- gl obal 0). The sample rate is given by srate. Typically, this would
be*sound- sr at e*, but it might also depend upon the sample rate of the sound from which the
spectral frames were derived. To obtain each frame, the function sends the message : next to the
iterator object, using XLISP s primitives for objects and message passing. The object should
return an array in the same format as obtained from snd- f f t , and the object should return NI L
when the end of the sound is reached. After each frame is inverse transformed into the time
domain, it is added to the resulting sound. Each successive frame is added with a sample offset
specified by skip relative to the previous frame. This must be an integer greater than zero. If
window is not NI L, it must be a sound. This window signal is multiplied by the inverse
transformed frame before the frame is added to the output sound. The length of each frame should

Page 78 NYQUIST MANUAL

be the same. The length is implied by the array returned by iterator, so it does not appear as a
parameter. This length is adso the number of samples used from window. Extra samples are
ignored, and window is padded with zeros if necessary, so be sure window is the right length. The
resulting sound is computed on demand as with other Nyquist sounds, so : next messages are
sent to iterator only when new frames are needed. One should be careful not to reuse or modify
iterator onceitispassedtosnd-ifft.

MIDI, ADAGIO, AND SEQUENCES Page 79

8. MIDI, Adagio, and Sequences

Nyquist includes facilities to read and write MIDI files as well as an ASCII text-based score
representation language, Adagio. XLISP and Nyquist can be used to generate MIDI files using
compositional algorithms. (See also Section 11.) A tutorial on using the Adadio representation and MIDI
can befound indenos/ m di _t ut ori al . ht m The Adagio language is described below. Adagio was
originally developed as part of the CMU MIDI Toolkit, which included a program to record and play
MIDI using the Adagio representation. Some of the MIDI features of Adagio may not be useful within
Nyquist.

Nyquist offers a number of different score representations, and you may find this confusing. In general,
MIDI files are acommon way to exchange music performance data, especially with sequencers and score
notation systems. The denos/ nmi di _tutori al . ht m examples show how to get the most precise
control when generating MIDI data. Adagio is most useful as a text-based score entry language, and it is
certainly more compact than Lisp expressions for MIDI-like data. The Xmusic library (Chapter 11) is best
for algorithmic generation of music and score manipulation. There are functions to convert between the
Adagio, MIDI sequence data, and Xmusic score representations.

Adagio is an easy-to-use, non-procedural notation for scores. In Adagio, text commands are used to
specify each note. If you are new to Adagio, you may want to glance at the examples in Section 8.3
starting on page 85 before reading any further.

A note is described in Adagio by a set of attributes, and any attribute not specified is ‘‘inherited’’ from
the previous line. Attributes may appear in any order and must be separated by one or more blanks. An
attribute may not contain any blanks. The attributes are: time, pitch, loudness, voice number, duration,
and articulation.

Adagio has been used to program a variety of hardware and software synthesizers, and the Adagio
compiler can be easily adapted to new environments. Although not originally intended for MIDI, Adagio
works quite well as arepresentation for MIDI scores. Adagio has been extended to allow MIDI controller
data such as modulation wheels, pitch bend, and volume, MIDI program commands to change timbre, and
System Exclusive messages.

A note command in Adagio must be separated from other notes. Usually, notes are distinguished by
writing each one on a separate line. Notes can also be separated by using a comma or semicolon as will
be described below.

Besides notes, there are several other types of commands:

1. An asterisk (*) in column one (or immediately after a comma, semicolon, or space)
indicates that the rest of the line is a comment. The line is ignored by Adagio, and is
therefore a good way to insert text to be read by people. Here are some examples:

* This is a coment.

T150 &4 * This is a comment tool
TI50 A ;* So is this.

2. An empty command (a blank line, for example) isignored asif it were a comment3,

3To be consistent, a blank line ought to specify zero attributes and generate a note that inherits all of its attributes from the
previous one. Adagio isintentionally inconsistent in this respect.

Page 80 NYQUIST MANUAL

3. An exclamation point (!) in column one (or immediately after a comma or semicolon)
indicates a special command. A special command does not generate a note. Specia
commands follow the ‘1" with no intervening spaces and extend to the end of the line, for
example:

I TEMPO 100

4. Control change commands are used to control parameters like pitch bend, modulation, and
program (timbre). Control change commands can be specified aong with notes or by
themselves. A command that specifies control changes without specifying a pitch will not
produce a note.

Adagio is insensitive to case, thus ‘**A’’ is equivalent to ‘*‘a’, and you can mix upper and lower case
letters freely.

8.1. Specifying Attributes
A note is indicated by a set of attributes. Attributes are indicated by a string of characters with no
intervening spaces because spaces separate attributes. The attributes are described below.

The default unit of time is a centisecond (100t s), but this can be changed to a millisecond (1000t s)
using the ! MSEC command and reset to centiseconds with ! CSEC (see Section 8.4.1). In the descriptions
below, the term ‘“time unit’” will be used to mean whichever convention is currently in effect.

8.1.1. Time
The time attribute specifies when to start the note. A timeis specified by a‘*T'" followed by a number
representing time units or by a duration (durations are described below). Examples:

T150 ** 1.5 sec (or .15 sec)

TR ** 3 quarter note’s duration
If no time is specified, the default time is the sum of the time and duration attributes of the previous note.
(But see Section 8.1.4.) Time is measured relative to the time of the most recent Tempo or Rate
command. (Seethe examplesin Section 8.3 for some clarification of this point.)

8.1.2. Pitch

The pitch attribute specifies what frequency to produce. Standard scale pitches are named by name,
using S for sharp, F for flat, and (optionally) N for natural. For example, C and CN represent the same
pitch, as do FS and G- (F sharp and G flat). Note that there are no bar lines, and accidentals to not carry
forward to any other notes asin common practice notation.

Octaves are specified by number. C4 ismiddle C, and B3 is a half step lower. F5 isthe top line of the
treble clef, etc. (Adagio octave numbering follows the SO standard, but note that thisis not universal. In
particular, Yamaha refers to middle C as C3.) Accidentals can go before or after the octave number, so
FS3 and F3S have the same meaning.

An alternate notation for pitch is Pn, where n is an integer representing the pitch.Middle C (C4) is
equivalent to P60, CS4 isP61, etc.

If you do not specify an octave, Adagio will choose one for you. This is done by picking the octave
that will make the current pitch as close to the previous pitch as possible. In the case of augmented

MIDI, ADAGIO, AND SEQUENCES Page 81
fourths or diminished fifths, there are two equally good choices. Adagio chooses the lower octave.

8.1.3. Duration
Duration is specified by a letter indicating a number of beats, followed by one or several modifiers.

The basic duration codes are:

W(whole, 4 beats),

H (half, 2 beats),

Q(quarter, 1 beat),

| (eighth, 1/2 beat),

S (sixteenth, 1/4 beat),

%(thirtysecond, 1/8 beat), and

N (sixtyfourth, 1/16 beat).
Note that E is a pitch, so eighth-notes use the duration code | . The default tempo is 100 beats per minute
(see Section 8.1.10). These codes may be followed by a T (triplet), indicating a duration of 2/3 the
normal. A dot (.) after a duration code extends it by half to 3/2 the normal. An integer after a note
multiplies its duration by the indicated value (the result is still just one note). Finally, a slash followed by
an integer divides the duration by the integer. Like al attributes, duration attributes may not have
embedded spaces. Examples:

Q 1 beat (Quarter note)

Qr 2/3 beat (quarter triplet)

W 6 beats(dotted whole note)

ST6 1 beat (6 sixteenth triplets)

H5 10 beats(5 half notes)

@/ 7 37 beats

A duration may be noted by Un, where n is an integer indicating 100!"s of a second (or 1000%s), see
Section 8.4.1. For example, U25 istwenty-five time units.

Durations may be combined using a plus sign:

QHIT ** a quarter tied to an eighth triplet
Q7+WQ/7 ** a 7th beat tied to a whole tied to 2/7th beat
Q+U10 ** a quarter plus 10 tinme units

8.1.4. Next Time
The time of the next command (the next command in the Adagio program text) is normally the time of

the current note command plus the duration of the current note. This can be overridden by a field
consisting of the letter N followed by a number indicating time units, or followed by a duration as
described above. The next note will then start at the time of the current note plus the duration specified
after N. If the next note has an explicit time attribute (T), then the specified time will override the one
based on the previous note. Examples:

NO ** start the next note at the sane tine as this one

N50 ** gstart the next note 0.5 seconds after this one

** start the next note 2/3 beat after the current one

NU10+Q ** start after 0.1 seconds plus a quarter
A comma has an effect similar to NO and is explained in Section 8.4.2. Articulation effects such as
staccato can be produced using N, but it is more convenient to use the articulation attribute described in
Section 8.1.6.

Page 82 NYQUIST MANUAL

8.1.5. Rest
Rests are abtained by including the field R in a note command. The effect of an R field is to omit the

note that would otherwise occur as the result of the current note command. In all other respects, the
command is processed just like any other line. This means that attributes such as duration, loudness, and
pitch can be specified, and anything specified will be inherited by the note in the next command.
Normally, arest will include just R and a duration. The fact that a note command specifies a rest is not
inherited. For example:

R H ** a half (two beat) rest

RH ** jllegal, R must be separated from H by space(s)
Because some synthesizers (e.g. a DX7) cannot change programs (presets) rapidly, it may be desirable to
change programs in arest so that the synthesizer will be ready to play by the end of the rest. See Section
8.1.9 for an example.

8.1.6. Articulation

Articulation in Adagio refers to the percentage of time a note is on relative to the indicated duration.
For example, to play a note staccato, you would normally play the note about half of its indicated
duration. In Adagio, articulation isindicated by # followed by an integer number indicating a percentage.
The articulation attribute does not affect the time of the next command. This example plays two staccato
quarter notes:

C Q #50
D

To produce overlapping notes, the articulation may be greater than 100.
Be aware that overlapping notes on the same pitch can be a problem for some synthesizers. The following example illustrates
this potential problem:

I TEMPO 60

C Q #160 * starts at tinme O, ends at 1.6 sec
DI * starts at tinme 1, ends at 1.8 sec
CcCQ * starts at tinme 1.5, ends at 3.1 sec?

At one beat per second (tempo 60), these three notes will start at times 0, 1, and 1.5 seconds, respectively. Since these notes have
an articulation of 160, each will be on 160% of its nominal duration, so the first note (C) will remain on until 1.6 seconds. But
the third note (another C) will start at time 1.5 seconds. Thus, the second C will be started before the first one ends. Depending
on the synthesizer, this may cancel the first C or play asecond Cin unison. In either case, a note-off message will be sent at time
1.6 seconds. If this cancels the second C, its actual duration will be 0.1 rather than 1.6 seconds as intended. A final note-off will
be sent at time 3.1 seconds.

8.1.7. Loudness

Loudnessisindicated by an L followed by a dynamic marking from the following: PPP, PP, P, MP, MF,
F, FF, FFF. Alternatively, a number from 1 to 127 may be used. The loudness attribute is the MIDI note
velocity. (Note that a MIDI velocity of 0 means ‘‘note-off,”” so the minimum loudness is 1.) The
dynamicmarkings are trandated into numbers as follows:

Lppp 20 Lnf 58
Lpp 26 Lf 75
Lp 34 Lff 98

Lnp 44 Lfff 127

MIDI, ADAGIO, AND SEQUENCES Page 83

8.1.8. Voice
The voice attribute tells which of the 16 MIDI channels to use for the note. The voice attribute consists

of aV followed by an integer from 1 (the default) to 16.

There is a limit to how many notes can be played at the same time on a given voice (MIDI channel). Since the limit depends
upon the synthesizer, Adagio cannot tell you when you exceed the limit. Similarly, Adagio cannot tell whether your synthesizer
is set up to respond to a given channel, so there is no guarantee that what you write will actually be heard.

8.1.9. Timbre (MIDI Program)

A MIDI program (synthesizer preset) can be selected using the attribute Zn, where n is the program
number (from 1 to 128). Notice that in MIDI, changing the program on a given channel will affect all
notes on that channel and possibly others. Adagio treats MIDI program changes as a form of control

change.
For many synthesizers, you will not be able to change programs at the start of a note or during a note. Change the program
during arest instead. For example:

R Z23 V4 ** change M DI channel 4 to program 23 during rest
A4 ** play a note on channel 4

Check how your synthesizer interprets program numbers. For example, the cartridge programs on a DX7 can be accessed by
adding 32 to the cartridge program number. Cartridge program number 10 is specified by Z42.

As in MIDI, the Adagio timbre is a property of the voice (MIDI channel), so the timbre will not be
inherited by notes on a different channel; to change the timbre on multiple voices (channels), you must
explicitly notate each change.

8.1.10. Tempo
The length of abeat may be changed using a Tempo command:

I'TEMPO n

where n indicates beats per minute. The exclamation mark tells Adagio that this is a special command
line rather than a note definition. A special command takes the place of a note specification. No other
attributes should be written on aline with a special command. The ! TEMPO command is associated with
atime, computed as if the ! TEMPO command were anote. The time attribute (T) of al succeeding notes
is now measured relative to the time of the ! TEMPO command. The new tempo starts at the ! TEMPO
command time and affects all succeeding notes. Durations specified in time units (for example U58,
N15) are not affected by the ! TEMPO command, and numerical times (for example T851) are computed
relative to the time of the last ! TEMPO command.

The ! TEMPO command isfairly clever about default durations. If the last duration specified before the

I TEMPO command is symbolic (using oneof *,% S, | , Q H, or W), then the default duration for the node
after the ! TEMPO command will be modified according to the tempo change. Consider the following
tempo change:

I TEMPO 60

A4 H

I TEMPO 120

G
In this example, the first note will last 2 seconds (2 beats at 60 beats per minute). The second note
inherits the duration (H) from the first note, but at 120 beats per minute, the second note will last only 1
second. If the duration had been specified U200 (also a duration of 2 seconds), the second note would
also last 2 seconds because the ! TEMPO command does not affect times or durations specified
numerically in time units. If the duration is the sum of a symbolic and a numeric specification, the

Page 84 NYQUIST MANUAL

inherited duration after a! TEMPO command is undefined.

8.1.11. Rate
The ! RATE command scales all times including those specified in hundredths of seconds. A rate of

100 means no change, 200 means twice as fast, and 50 means half as fast. For example, to make a piece
play 10% faster, you can add the following command at the beginning of the score:

I RATE 110
I RATE and ! TEMPO commands combine, so

I RATE 200

I TEMPO 70
will play 70 beats per minute at double the normal speed, or 140 beats per minute. Like ! TEMPO, the
time of the ! RATE command is added to the time attribute of all following notes up to the next ! TEMPO
or ! RATE command.

Two ! RATE commands do not combine, so a ! RATE command only affects the rate until the next
! RATE command.

Although ! TEMPOand ! RATE can occur in the middle of anote (using N, T, etc.) they do not affect a
note already specified. This property alows multiple tempi to exist simultaneously (see Section 8.4.4).

8.2. Default Attributes

If an attribute is omitted, the previous one is used by default (with the exception of the time attribute).
The default values for the first note, which are inherited by succeeding notes until something €else is
specified, are given below in Adagio notation:

Time TO

Pitch (o7}

Duration Q
Articulation #100
Loudness LFFF

Voice V1

Tempo | TEMPO 100
Rate I RATE 100

Control changes (including timbre or MIDI program, specified by Z) have no default value and are only
sent as specified in the score.

Important: the rules for determining when a command will play a note are as follows (and this has
changed dightly from previous versions):
1. If aspecia (!) command or nothing is specified, e.g. ablank line, do not play a note.

2. 1f R(for “‘rest’’) is specified, do not play a note.
3. Otherwise, if apitch is specified, do play a note.

4. Otherwise, if no control changes (or program changes) are specified (so this is a command
with non-pitch attributes and no control changes), do play anote.
Another way to say this is **Speciad commands and commands with rests (R) do not play notes.
Otherwise, play anoteif apitch is specified or if no control is specified.”’

MIDI, ADAGIO, AND SEQUENCES Page 85

8.3. Examples
The following plays the first two bars of ‘*Happy Birthday’’. Note that Adagio knows nothing of bar
lines, so the fact that the first note occurs on beat 3 or that the meter is three-four is of no consequence:
*Exanple 1 ** Happy Birthday tune (C ngjor)
I TEMPO 120
&A1, LF
A S
Ad Q
4
c5
B4 H
The time attribute for the first note is zero (0). The second note will occur a dotted eighth later, etc.
Notice that no timbre or rate was specified. Adagio will provide reasonable default values of 1 and 100,
respectively.

The following example plays the first four bars of an exercise from Bartok’s Mikrokosmos (Vol. 1,
No. 12). An extraquarter note isinserted at the beginning of each voice in order to alow time to change
MIDI programs. The right hand part is played on voice (MIDI channel) 1 and the left hand part on voice
2. Natice the specification of the time attribute to indicate that voice 2 starts at time 0. Also, default
octaves are used to reduce typing.

*Exanple 2 ** Bartok
*voice 1, right hand

R Q Z10 Vi1 ** extra rest for program change
A4 H

B Q
C

00
T

Q

DOOW>WOO

*voice 2, left hand
TO R Q Z15 V2 ** extra rest for program change
&G H

DOMMEOTMMOMOMmMT

The next example is the same piece expressed in a different manner, illustrating the interaction between

Page 86 NYQUIST MANUAL

the | TEMPO command and the time attribute. Recall that the time attribute is measured relative to the
time of the last | TEMPO command:

*Exanple 3 ** 4 neasures in 2 sections

I Tenmpo 100

*Voice 1, Measures 1 & 2

*Voice 2, Measures 1 & 2
TO R Q Z15 V2
H

Q&3

FQ

E

D H

E H

I TEMPO 100

*Voice 1, Measures 3 & 4
* note that Z10 is still in effect for V1
Vi D4 Q

C

B

A

B

C

D

R

*\oi ce 2, Measures 3 & 4
TO V2 D3 Q

E

F

G

F

E

D

R

The piece is written in 4 sections. The first plays a rest followed by two measures, starting at time O.
The next section changes the time back to zero and plays two measures of the left hand part (voice 2).
The next command (!TEMPO 100) sets the tempo to 100 (it aready is) and sets the reference time to be
two measures into the piece. Therefore, the next note (D4) will begin measure 3. The D3 that begins the
last group of notes has a TO attribute, so it will also start at measure 3. Notice how the ! TEMPO
command can serve to divide a piece into sections.

The last example will show yet another way to express the same piece of music using the ‘*Next'’
attribute. Only the first bar of music is given.

MIDI, ADAGIO, AND SEQUENCES Page 87

*Exanple 4 ** use of the Next attribute
! Tenpo 100

R Q Z10 V1 NO

R Q zZ15 V2

A4 H V1 NO
G3 V2

B4 Q V1 NO
F3 W2

4 QV1lI N

E3S W2
Here, each pair of lines represents two simultaneous notes. The NO attribute forces the second line to start
a the same time as thefirst line of each pair. Because of the large intervals, octave numbers (3 and 4) are
necessary to override the default octave for these pitches.

8.4. Advanced Features
Beyond the simple notation described above, Adagio supports a number of features. (See aso the next
chapter.)

8.4.1. Time Unitsand Resolution
The default time unit is 10ms (ten milliseconds or one centisecond or 100t of a second), but it is
possible to change the basic unit to 1ms, or 1000t of a second. The time unit can be specified by:

| CSEC centisecond time units = 100t
| MSEC millisecond time units = 1000t

The time unit remains in effect until the next ! CSEC or ! MSEC command.

8.4.2. Multiple Notes Per Line

Notes can be separated by commas or semicolons as well as by starting a new line. A comma is
equivalent to typing NO and starting a new line. In other words, the next note after a comma will start at
the same time as the note before the comma. In general, use commas to separate the notes of a chord.

A semicolon is equivalent to starting anew line. In general, use semicolons to group notes in a melody.

Here is yet another rendition of the Bartok:

*Exanple 5 ** use of semnicol ons

I Tenpo 100

R QZzi0 V1

AMH BQ C DH C DQ C B A B C D R

TO R Q Z15 V2

&BH FQ E DH EE DQ E F, G F, E D R
This example is similar to Example 2, except semicolons are used. Note how semicolons make the two
lines of music stand out. The next example is similar to Example 4, except commas are used and four

bars are notated. The music below is treated as a sequence of 2-note chords, with each chord on a
separate line:

Page 88 NYQUIST MANUAL

TRRFRERERRER
<

8.4.3. Control Change Commands

Any control change can be specified using the syntax ‘‘~n(v) '’, where n is the controller number (O -
127), and v is the value. In addition, Adagio has some specia syntax for some of the commonly used
control changes (note that Pitch bend, Aftertouch, and MIDI Program Change are technically not MIDI
control changes but have their own special message format and status bytes):

K Portamento switch
Modulation wheel
Aftertouch
Volume

Pitch bend

N < X 0O £Z

Program Change

The letter listed beside each control function is the Adagio command letter. For example, M23 is the
command for setting the modulation wheel to 23. Except for pitch bend, the portamento switch, and
MIDI Program Change, al values range from 0 to 127. Pitch bend is*‘off"’ or centered at 128, and has a
range from 0O to 255 (MIDI allows for more precision, but Adagio does not). Turn on portamento with
K127 and off with KO. Programs are numbered 1 to 128 to correspond to synthesizer displays.

About volume: Midi volume is just a control, and the Midi standard does not say what it means.
Typically it does what the volume pedal does; that is, it scales the amplitude in a continuously changeable
fashion. In contrast, Midi velocity, which is controlled by the L (loudness) attribute, is part of a Midi
note-on command and is fixed for the duration of the note. Typicaly, these two ways of controlling
loudness and amplitude operate independently. In some low-cost synthesizers the numbers seem to be
added together internally and volume changes are ignored after the note starts.

About pitch bend: Midi pitch bend is a number from 0 to 16383, where 8192 is the center position. To
convert to Midi, Adagio simply multiplies your number by 64, giving values from 0 to 16320. Note that
Y128 trandates exactly to 8192. The meaning of pitch bend depends upon your synthesizer and its
setting. Most synthesizers let you specify a ‘‘pitch bend range.”” A range of one semitone means that

MIDI, ADAGIO, AND SEQUENCES Page 89

Y255 will produce a bend of approximately one semitone up, and YO will bend one semitone down. If
the range is 12 semitones, then the same Y255 will bend an octave. Typically, pitch bend is exponential,
so each increment in the pitch bend value will bend an equal nhumber of centsin pitch.

Control changes can be part of a note specification or independent. In the following example, a middle
C is played with a modulation wheel setting of 50 and a pitch bend of 120. Then, at 10 unit intervals, the
pitch bend is decreased by 10. The last line sets the portamento time (controller 5) to 80:

*Exanple 7

C4 LMF MbO Y120 U100 N10

Y110 N10; Y100 N10; Y90 N10; Y80 N10
Y70 N10; Y60 N10; Y50 N10

~5(80)

See Section 8.2 on page 84 for rules on whether or not acommand will play a note.

8.4.4. Multiple Tempi
Writing a piece with multiple tempi requires no new commands; you just have to be clever in the use of

Tempo and Time. The following plays a 7 note diatonic scale on voice 1, and a 12 note chromatic scale
on voice 2:

*Exanple 8 ** multiple tenpi

! TEMPO 70

Vi~:4, D E F G A B

TO R NO

I TEMPO 120
V2 &4; CS, D DS, E F;, FS, G GS;, A, AS, B

| TEMPO 100

vVl C5, V2 G5
The third line plays the 7-note diatonic scale on voice 1. The next line contains the tricky part: notice
that the time is set back to zero, there is arest, and a next (N) attribute is used to specify that the next
default time will be at the same time as the current one. This is tricky because a ! TEMPO command
cannot have atime (TO) attribute, and a TO by itself would create a note with aduration. TO R NO says:
‘‘gototime 0, do not play a note, and do not advance the time before the next command’’. Thus, thetime
of the! TEMPO 120 command is zero. After the 12 note scale, the tempo is changed to 100 and a final
note is played on each voice. A little arithmetic will show that 7 notes at tempo 70 and 12 notes at tempo
120 each take 6 seconds, so the final notes (C5) of each scale will happen at the same time.

8.4.5. MIDI Synchronization

The Adagio program (but not Nyquist) can synchronize with external devices using MIDI real time
messages. Thus, Adagio hasa! CLOCK command. This command is currently of no use to Nyquist users
but is documented here for completeness (it’s part of the language syntax even if it does not do anything).

Since Adagio supports multiple tempi, and Midi clock is based on beats, it is necessary to be explicit in
the score about where the clock should start and what is the duration of a quarter note. The ! CLOCK
command in Adagio turns on a 24 pulse-per-quarter (PPQ) clock at the current tempo and time:

I TEMPO 100
I CLOCK

Page 90 NYQUIST MANUAL

A I CLOCK command must also be inserted for each tempo change that is to be reflected in the Midi
clock. Typically, each 'TEMPO command will be followed by a!CLOCK command.

Clock commands and thus tempo changes can take place at arbitrary times. It is assumed that tempo changes on an exact 24t of
a beat subdivision (for example, exactly on a beat). If not, the tempo change will take place on the nearest exact 24" of a beat
subdivision. Thismay be earlier or later than the requested time.

8.4.6. System Exclusive M essages

Adagio has a definition facility that makes it possible to send system exclusive parameters. Often,
there are parameters on Midi synthesizers that can only be controlled by system exclusive messages.
Examples include the FM ratio and LFO rate on a DX7 synthesizer. The following example defines a
macro for the DX7 LFO rate and then shows how the macro is used to set the LFO rate for a B-flat whole
note in the score. The macro definition is given in hexadecimal, except v is replaced by the channel
(voice) and % is replaced by the first parameter. A macro is invoked by writing *‘~"" followed by the
macro name and alist of parameters:

| DEF LFO FO 43 Ov 01 09 9% F7
Bf 5 W ~LFQ(25)

In general, the ! DEF command can define any single MIDI message including a system exclusive
message. The message must be complete (including the status byte), and each ! DEF must correspond to
just one message. The symbol following ! DEF can be any name consisting of aphanumeric characters.
Following the name is a hexadecimal string (with optional spaces), al on one line. Embedded in the
string may be the following special characters:

v Insert the 4-bit voice (MIDI channel) number. If v occursin the place of a high-order
hexadecimal digit, replace v with Ov so that the channel number is always placed in
the low-order 4 bits of a data byte. In other words, v is padded if necessary to fal
into the low-order bits.

% Insert a data byte with the low-order 7 bits of parameter number n. Parameters are
numbered 1 through 9. If the parameter value is greater than 127, the high-order bits
are discarded.

An Insert a data byte with bits 7 through 13 of parameter number n. In other words, shift

the value right 7 places then clear al but the first 7 bits. Note that 14-bit numbers can
be encoded by referencing the same parameter twice; for example, Y44 will insert
the low-order followed by the high-order parts of parameter 4 into two successive
data bytes.

Parameters are separated by commas, but there may be no spaces. The maximum number of
parameters allowed is 9. Hereis an example of definitions to send a full-resolution pitch bend command
and to send a system exclusive command to change a DX 7 parameter?.

4My TX816 Owner's Manual gives an incorrect format for the change parameter sysex command (according to the manual,
there is no data in the message!) | am assuming that the data should be the last byte before the EOX and that there is no byte
count. If you are reading this, assume that | have not tested this guess, nor have | tested this example.

MIDI, ADAGIO, AND SEQUENCES Page 91

* Define macro for pitch bend commands:
! DEF bend Ev % "1

A ~bend(8192) ** 8192 is "pitch bend off"

* Change the LFO SPEED:

* SYSEX = FO, Yamaha = 43, Substatus/Channel = 1lv,

* Goup# = 01, Paraneter# = 9, Data = 0-99, EOX = F7
IDEF | fospeed FO 43 1v 01 09 %4 F7

* now use the definitions:
A ~bend(7567) N4O
~| f ospeed(30) N35

8.4.7. Control Ramps
The ! RAMP command can specify a smooth control change from one value to another. It consists of a

specification of the starting and ending values of some control change, a duration specifying how often to
send anew value, and a duration specifying the total length of the ramp.

I RAMP X10 X100 Q W

I RAMP ~23(10) ~23(50) W0 W

I RAMP ~I fo(15) ~Ifo(35) U10
The first line says to ramp the volume control (controller number 7) from 10 to 100, changing at each
guarter note for the duration of two whole notes. The second line says to ramp controller number 23 from
value 10 to value 50, sending a new control change message every 20 time units. The overall duration of
the ramp should be equivalent to a whole note (W. As shown in the third line, even system exclusive
messages controlled by parameters can be specified. If the system exclusive message has more than one
parameter, only one parameter may be ‘‘ramped’’; the others must remain the same. For example, the
following would ramp the second parameter:

I RAMP ~nysysex(4, 23, 75) ~nysysex(4, 100, 75) U10 W
A rather curious and extreme use of macros and ramps s illustrated in the following example. The not eon macro starts a note,
and not eof f endsit. Ramps can now be used to emit a series of notes with changing pitches or velocities. Since Adagio has
no ideathat these macros are turning on notes, it is up to the programmer to turn them off!

I DEF noteon 9v % 9%

I DEF noteoff 8v % %R

~not eon(48, 125)

~not eof f (48, 126)

* turn on sonme notes

I RAMP ~not eon(36, 125) ~not eon(60, 125) Q W NW
* turn them of f

I RAMP ~not eof f (60, 50) ~not eof f (36, 50) Q W NW

8.4.8. The'End Command
The special command ! END marks the end of a score. Everything beyond that is ignored, for example:
* this is a score
C D E F, GW
I END
since the score has ended, this text will be ignored

Page 92 NYQUIST MANUAL

8.4.9. Calling C Routines
Itis possible to call C routines from within Adagio scores when using specially linked versions, but this
feature is disabled in Nyquist. The syntax is described here for completeness.

The ! CALL command calls a C routine that can in turn invoke a complex sequence of operations.
Below isacall to atrill routine, which is a standard routine in Adagio. The parameters are the base pitch
of thetrill, the total duration of thetrill, theinterval in semitones, the duration of each note of the trill, and
the loudness. Noatice that both numbers and Adagio notation can be used as parameters:

ICALL trill (A5, W2,S Lnf) T278 Vi
The parameter list should have no spaces, and parameters are separated by commas. Following the close
parenthesis, you may specify other attributes such as the starting time and voice as shown in the example
above.

A parameter may be an Adagio pitch specification, an Adagio duration, an Adagio loudness, a number,
or an ASCII character within single quotes, e.g. " a’ is equivalent to 97 because 97 is the decimal
encoding of ‘&’ in ASCII.

The! CALL may be followed by alimited set of attributes. These are time (T), voice (V), and next time
(N). The! CALL is made at the current time if no time is specified, and the time of the next adagio
command isthe time of the ! CALL unless anext timeis specified. In other words, the default is NO.

8.4.10. Setting C Variables

In addition to calling C routines, there is another way in which scores can communicate with C. As
with I CALL, specific C code must be linked before these commands can be used, and this is not
supported in Nyquist. The ! SETI command sets an integer variable to a value, and the ! SETV
command sets an element of an integer array. For example, the next line sets the variable del ay to 200
and setst r ansposi ti on[5] to -4 at time 200:

I SETI del ay 200
I SETV transposition 5 -4 T200

As with the ! CALL command, these commands perform their operations at particular times according to
their place in the Adagio score. This makes it very easy to implement time-varying parameters that
control various aspects of an interactive music system.

LINEAR PREDICTION ANALYSISAND SYNTHESIS Page 93

9. Linear Prediction Analysisand Synthesis

Nyquist provides functions to perform Linear Prediction Coding (LPC) analysis and synthesis. In
simple terms, LPC analysis assumes that a sound is the result of an all-pole filter applied to a source with
a flat spectrum. LPC is good for characterizing the general spectral shape of a signal, which may be
time-varying as in speech sounds. For synthesis, any source can be filtered, allowing the general spectral
shape of one signal (used in analysis) to be applied to any source (used in synthesis). A popular effect is
to give vowel-like spectrato musical tones, creating an artificial (or sometimes natural) singing voice.

Examples of LPC analysis and synthesis can be found in thefilel pc_t ut ori al . ht m which is part
of the standard Nyquist release.

As with FFT processing, LPC analysis takes a sound as input and returns a stream of frames. Frames
are returned from an object using the : next selector just as with FFT frames. An LPC frame is a list
consisting of: RMSL, the energy of the input signal, RMX2, the energy of the residual signal, ERR, the
square root of RMSI/RMS?, and FILTER-COEFS, an array of filter coefficients. To make code more
readable and to avoid code dependence on the exact format of a frame, the functions
| pc-frame-rnsl, | pc-frame-rns2, | pc-frane-err, and | pc-frane-filter-coefs
can be applied to a frame to obtain the respective fields.

The z transform of the filter is H(2) = 1/A(2), where A(2) is a polynomial of the form A(z) = 1+ a;z +
ayz+...+az TheFILTER-COEFSarray hastheform#(a, a, ; ... aga, ay) .

Thefilel pc. | sp defines some useful classes and functions. The file is not automatically loaded with
Nyquist, so you must execute (1 oad "I pc") before using them.

9.1. LPC Classes and Functions

(make- | panal -iterator sound framedur skiptime npoles)

Makes an iterator object, an instance of | panal - cl ass, that returns LPC frames from
successive frames of samples in sound. The duration (in seconds) of each frame is given by
framedur, a FLONUM The skip size (in seconds) between successive frames is given by skiptime,
a FLONUM Typica values for framedur and skiptime are 0.08 and 0.04, giving 25 frames per
second and a 50% frame overlap. The number of polesis given by npoles, a FI XNUM The result
is an object that responds to the : next selector by returning a frame as described above. NI L is
returned when sound terminates. (Note that one or more of the last analysis windows may be
padded with zeros. NI L is only returned when the corresponding window would begin after the
termination time of the sound.)

(make-1 pc-file-iterator filename)
Another way to get LPC frames is to read them from a file. This function opens an ASCII file
containing LPC frames and creates an iterator object, an instance of class| pc-fil e-cl ass to
accessthem. Create afileusing save- | pc-fi | e (seebelow).

(save-| pc-fil elpc-iterator filename)
Create a file containing LPC frames. This file can be read by make-| pc-fil e-iterator
(see above).

(show | pc-dat a Ipc-iterator iniframe endframe [poles?])
Print values of LPC frames from an LPC iterator object. The object is Ipc-iterator, which is
typically an instance of | panal - cl ass or | pc-fil e-cl ass. Frames are numbered from
zero, and only files starting at iniframe (a FI XNUM and ending before endframe (also a
FI XNUM are printed. By default, only the values for RMSL, RMS2, and ERR are printed, but if

Page 94 NYQUIST MANUAL

optiona parameter poles? isnon-Nl L, then the LPC coefficients are also printed.

(all pol es-from |l pcsnd Ipc-frame)
A single LPC frame defines a filter. Use al | pol es-from | pc to apply this filter to snd, a
SOUND. To obtain Ipc-frame, a LI ST containing an LPC frame, either send : next to an LPC
iterator, or use nt h- f r ame (see below). The result is a SOUND whose duration is the same as
that of snd.

(1 preson snd Ipc-iterator skiptime)

Implements a time-varying all-pole filter controlled by a sequence of LPC frames from an
iterator. The SOUND to be filtered is snd, and the source of LPC frames is Ipc-iterator, typically
an instance of | panal - cl ass or | pc-fil e-cl ass. The frame period (in seconds) is given
by skiptime (a FLONUM). This number does not have to agree with the skiptime used to analyze
the frames. (Greater values will cause the filter evolution slow down, and smaller values will
cause it to speed up.) The result is a SOUND. The duration of the result is the minimum of the
duration of snd and that of the sequence of frames.

(I pc-franme-rnsl frame)
Get the energy of the input signal from aframe.

(I pc-frane-rns2 frame)
Get the energy of the residual from aframe.

(I pc-frane-err frame)
Get the square root of RMSI/RMS2 from aframe.

(I pc-frane-filter-coefs frame)
Get thefilter coefficients from aframe.

9.2. Low-level LPC Functions
The lowest-level Nyquist functions for LPC are

* snd- | panal for anaysis,
* snd- al | pol es, anall-polefilter with fixed coefficients, and
e snd- | pr eson, an al-polefilter that takes frames from an LPC iterator.

(snd- I panal samps npoles)
Compute an LPC frame with npoles (a FI XNUM poles from an ARRAY of samples (FLONUNVS).
Note that snd-f et ch-array can be used to fetch a sequence of frames from a sound.
Ordinarily, you should not use this function. Use make- | panal -i t er at or instead.

(snd-al | pol essnd Ipc-coefs gain)
A fixed dl-pole filter. The input is snd, a SOUND. The filter coefficients are given by Ipc-coefs
(an ARRAY), and the filter gain is given by gain, a FLONUM The result is a SOUND whose
duration matches that of snd. Ordinarily, you should use al | pol es-from | pc instead (see
above).

(snd- 1| preson snd Ipc-iterator skiptime)
Thisfunctionisidentical tol pr eson (see above).

DEVELOPING AND DEBUGGING IN NYQUIST Page 95

10. Developing and Debugging in Nyquist

There are a number of tools, functions, and techniques that can help to debug Nyquist programs. Since
these are described in many places throughout this manual, this chapter brings together many suggestions
and techniques for developing code and debugging. Y ou really should read this chapter before you spend
too much time with Nyquist. Many problems that you will certainly run into are addressed here.

10.1. Debugging

Probably the most important debugging tool is the backtrace. When Nyquist encounters an error, it
suspends execution and prints an error message. To find out where in the program the error occurred and
how you got there, start by typing (bt) . This will print out the last severa function cals and their
arguments, which is usually sufficient to see what is going on.

In order for (bt) to work, you must have a couple of global variables set: *t r acenabl e* is
ordinarily set to NI L. If it is true, then a backtrace is automatically printed when an error occurs,
br eakenabl e must be set to T, as it enables the execution to be suspended when an error is
encountered. If *br eakenabl e* isNI L (fase), then execution stops when an error occurs but the stack
is not saved and you cannot get a backtrace. Finaly, bt is just a macro to save typing. The actual
backtrace function is bakt r ace, which takes an integer argument telling how many levelsto print. All
of these things are set up by default when you start Nyquist.

Since Nyquist sounds are executed with a lazy evaluation scheme, some errors are encountered when
samples are being generated. In this case, it may not be clear which expression isin error. Sometimes, it
is best to explore a function or set of functions by examining intermediate results. Any expression that
yields a sound can be assigned to a variable and examined using one or more of: s-plot,
snd-print-tree, and of course pl ay. Thesnd- pri nt -t r ee function prints a lot of detail about
the inner representaion of the sound. Keep in mind that if you assign a sound to a global variable and then
look at the samples (e.g. with pl ay or s- pl ot), the samples will be retained in memory. At 4 bytes per
sample, abig sound may use all of your memory and cause a crash.

Another technique is to use low sample rates so that it is easier to plot results or look at samples
directly. Thecalls:

(set-sound-srate 100)
(set-control -srate 100)

set the default sample rates to 100, which is too sow for audio, but useful for examining programs and
results. The function

(snd-sanpl es sound limit)

will convert up to limit samples from sound into a Lisp array. This is another way to look at results in
detail.

Thet r ace function is sometimes useful. It prints the name of a function and its arguments everytimg
the function is called, and the result is printed when the function exits. To trace the osc function, type:

(trace osc)
and to stop tracing, type (unt race osc).

If a variable needs a value or a function is undefined, you can fix the error (by setting the variable or
loading the function definition) and keep going. Use (co), short for (conti nue) to reevaluate the

Page 96 NYQUIST MANUAL

variable or function and continue execution.

When you finish debugging a particular call, you can ‘‘pop’’ up to the top level by typing (top), a
short namefor (t op- | evel).

10.2. Useful Functions

(grindef name)
Prints a formatted listing of a lisp function. This is often useful to quickly inspect a function
without searching for it in source files. Do not forget to quote the name, eg. (gri ndef
"prod).

(args name)
Similar to gri ndef, this function prints the arguments to a function. This may be faster than
looking up a function in the documentation if you just need a reminder. For example, (ar gs
"1 p) prints**(LP S C),”” which may help you to remember that the arguments are a sound (S)
followed by the cutoff (C) frequency.

The following functions are useful short-cuts that might have been included in XLISP. They are so
useful that they are defined as part of Nyquist.

(i ncf symbol)
Increment symbol by one. This is a macro, and symbol can be anything that can be set by set f .
Typicaly, symbol is a variable: *“(i ncf i), but symbol can aso be an array element:
“(incf (aref nyarray i)).”

(decf symbol)
Decrement symbol by one. (Seei ncf , above.)

(push val lis)

Push val onto lis (a Lisp list). Thisis a macro that is equivalent to writing (setf lis (cons
val lis)) .

(pop lis)
Remove (pop) the first item from lis (a Lisp list). This is a macro that is equivalent to writing
(setf lis (cdr lis)). Notethat the remaining list is returned, not the head of the list that has
been popped. Retrieve the head of thelist (i.e. the top of the stack) using f i r st or, equivaently,
car.

The following macros are useful control constructs.

(whil e test stmtl stmt2 ...)
A conventional ‘‘while’’ loop. If test is true, perform the statements (stmtl, stmt2, etc.) and
repeat. If test is false, return. This expression evaluates to NIL unless the expression (return
expr) isevaluated, in which case the value of expr is returned.

(when test action)
A conventional ‘‘if-then’’ statement. If test is true, action is evaluated and returned. Otherwise,

NIL isreturned. (Usei f or cond to implement *‘if-then-else”’ and more complex conditional
forms.

Sometimes it is important to load files relative to the current file. For example, thel i b/ pi ano. | sp
library loads data files from the | i b/ pi ano directory, but how can we find out the full path of | i b?
The solution is:

(current-path)

Returns the full path name of the file that is currently being loaded (seel oad). Returns NIL if no
fileis being loaded.

Finally, there are some helpful math functions:

DEVELOPING AND DEBUGGING IN NYQUIST Page 97

(real -randonfrom to)
Returns a random FLONUM between from and to. (See also r r andom which is equivalent to
(real -random 0 1)).

(power xy)
Returns x raised to the y power.

Page 98 NYQUIST MANUAL

XMUSIC AND ALGORITHMIC COMPOSITION Page 99

11. Xmusic and Algorithmic Composition

Several Nyquist libraries offer support for algorithmic composition. Xmusic is a library for generating
sequences and patterns of data. Included in Xmusic is the scor e- gen macro which helps to generate
scores from patterns. Another important facility isthedi stri buti ons. | sp library, containing many
different random number generators.

11.1. Xmusic Basics

Xmusic is inspired by and based on Common Music by Rick Taube. Currently, Xmusic only
implements patterns and some simple support for scores to be realized as sound by Nyquist. In contrast,
Common Music supports MIDI and various other synthesis languages and includes a graphical interface,
some visualization tools, and many other features. Common Music runs in Common Lisp and Scheme,
but not XLISP, which is the base language for Nyquist.

Xmusic patterns are objects that generate data streams. For example, the cycl e- cl ass of objects
generate cyclical patternssuchas”123123123..",0r"1234321234...". Patterns can be used to
specify pitch sequences, rhythm, loudness, and other parameters.

To use any of the Xmusic functions, you must manually load xm | sp, that is, type (| oad "xm') to
Nyquist. To use a pattern object, you first create the pattern, e.g.

(setf pitch-source (make-cycle (list c4 d4 e4 f4)))
After creating the pattern, you can access it repeatedly with next to generate data, e.g.

(play (segrep (i 13) (pluck (next pitch-source) 0.2)))
This will create a sequence of notes with the following pitches: ¢, d, e, f, ¢, d, g f, ¢, d, e f, c. If you
evaluate this again, the pitch sequence will continue, starting on "d".

It is very important not to confuse the creation of a sequence with its access. Consider this example:

(play (segrep (i 13)
(pluck (next (nmake-cycle (list c4 d4 ed4 f4))) 0.2)))
This looks very much like the previous example, but it only repeats notes on middle-C. The reason is that
every time pl uck is evaluated, nake- cycl e is called and creates a new pattern object. After the first
item of the pattern is extracted with next , the cycle is not used again, and no other items are generated.

To summarize this important point, there are two steps to using a pattern. First, the pattern is created
and stored in avariable using set f . Second, the pattern is accessed (multiple times) using next .

Patterns can be nested, that is, you can write patterns of patterns. In general, the next function does
not return patterns. Instead, if the next item in a pattern is a (nested) pattern, next recursively gets the
next item of the nested pattern.

While you might expect that each call to next would advance the top-level pattern to the next item,
and descend recursively if necessary to the inner-most nesting level, thisis not how next works. Instead,
next remembers the last top-level item, and if it was a pattern, next continues to generate items from
that same inner pattern until the end of the inner pattern’s period is reached. The next paragraph explains
the concept of the period.

The data returned by a pattern object is structured into logical groups called periods. You can get an
entire period (asalist) by calling (next pattern t) . For example:

Page 100 NYQUIST MANUAL

(setf pitch-source (make-cycle (list c4 d4 e4 f4)))
(next pitch-source t)

Thisprintsthelist (60 62 64 65), whichisone period of the cycle.

You can also get explicit markers that delineate periods by calling (send pattern : next). In this
case, the value returned is either the next item of the pattern, or the symbol +eop+ if the end of a period
has been reached. What determines a period? This is up to the specific pattern class, so see the
documentation for specifics. You can override the *“natural’’ period using the keyword : f or , e.g.

(setf pitch-source (make-cycle (list c4 d4 e4 f4) :for 3))

(next pitch-source t)

(next pitch-source t)
This printsthe lists (60 62 64) (65 60 62). Notice that these periods just restructure the stream
of items into groups of 3.

Nested patterns are probably easier to understand by example than by specification. Here is a simple

nested pattern of cycles:

(setf cycle-1 (make-cycle "(a b c)))

(setf cycle-2 (make-cycle "(x y z)))

(setf cycle-3 (make-cycle (list cycle-1 cycle-2)))

(dotinmes (i 9) (format t "~A " (next cycle-3)))
This will print "A B C X Y Z A B C". Notice that the inner-most cycles cycl e-1 and cycl e- 2
generate a period of items before the top-level cycl e- 3 advances to the next pattern.

Before describing specific pattern classes, there are several optional parameters that apply in the
creating of any pattern object. These are:

:for The length of a period. This overrides the default by providing a
numerical length. The value of this optional parameter may be a pattern
that generates a sequence of integers that determine the length of each
successive period. A period length may not be negative, but it may be

zero.
: name A pattern object may be given a name. This is useful if the : trace
option is used.
:trace If non-null, this optional parameter causes information about the pattern

to be printed each time an item is generated from the pattern.
The built-in pattern classes are described in the following section.

11.2. Pattern Classes

11.2.1. cycle
The cycl e-cl ass iterates repeatedly through a list of items. For example, two periods of
(make-cycle '(a b c¢)) woudbe(A B C (A B Q.

(make-cycl e items [:for for] [:name name] [:trace trace])
Make a cycle pattern that iterates over items. The default period length is the length of items. (See
above for a description of the optional parameters.) If items is a pattern, a period of the pattern
becomes the list from which items are generated. Thelist is replaced every period of the cycle.

XMUSIC AND ALGORITHMIC COMPOSITION Page 101

11.2.2. line

The | i ne-cl ass is similar to the cycle class, but when it reaches the end of the list of items, it
simply repeats the last item in the list. For example, two periods of (meke-line "(a b c¢)) would
be(ABC (CCQO.

(make-line items [:for for] [:name name] [:trace trace])
Make a line pattern that iterates over items. The default period length is the length of items. As
with make- cycl e, items may be a pattern. (See above for a description of the optional
parameters.)

11.2.3. random

Therandom cl ass generates items at random from alist. The default selection is uniform random
with replacement, but items may be further specified with a weight, a minimum repetition count, and a
maximum repetition count. Weights give the relative probability of the selection of the item (with a
default weight of one). The minimum count specifies how many times an item, once selected at random,
will be repeated. The maximum count specifies the maximum number of times an item can be selected in
arow. If anitem has been generated n times in succession, and the maximum is equal to n, then the item
is disqualified in the next random selection. Weights (but not currently minima and maxima) can be
patterns. The patterns (thus the weights) are recomputed every period.

(rmake-randomitems [: for for] [:name name] [:trace trace])

Make a random pattern that selects from items. Any (or al) element(s) of items may be lists of the
following form: (value [: wei ght weight] [:nmin mincount] [:nmax maxcount] , where
value is the item (or pattern) to be generated, weight is the relative probability of selecting this
item, mincount is the minimum number of repetitions when this item is selected, and maxcount is
the maximum number of repetitions allowed before selecting some other item. The default period
length is the length of items. If itemsis a pattern, a period from that pattern becomes the list from
which random selections are made, and a new list is generated every period.

11.2.4. palindrome
Thepal i ndr one- cl ass repeatedly traverses alist forwards and then backwards. For example, two
periods of (nake-pal i ndrone "(a b c¢)) woudbe(A B CCBA (ABCCBA).The
: el i de keyword parameter controls whether the first and/or last elements are repested:
(rmake-palindrone '(a b c) :elide nil)
;; generates ABCCBAABCCBA...

(rmake-palindronme '(a b c) :elide t)
7, generates ABCBABCB...

(make-palindrome '(a b c) :elide :first)
;; generates ABCCBABCCB...

(make-palindrone '(a b c) :elide :last)
;; generates ABCBAABCBA ...

(make-pal i ndrone items [:elide €elidg] [:for for] [:name name] [:trace trace])
Generate items from list aternating in-order and reverse-order sequencing. The keyword
parameter elide can havethevalues: first,: |l ast,t,orni | to control repetition of the first
and last elements. The elide parameter can aso be a pattern, in which case it is evaluated every
period. One period is one complete forward and backward traversal of the list. If items is a
pattern, a period from that pattern becomes the list from which random selections are made, and a

Page 102 NYQUIST MANUAL

new list is generated every period.

11.2.5. heap

The heap- cl ass selectsitemsin random order from alist without replacement, which means that all
items are generated once before any item is repeated. For example, two periods of (make- heap ' (a
b c)) mightbe(C A B) (B A C).

(rmake- heap items [:for for] [:name namel [:trace trace])
Generate items randomly from list without replacement. The period length is the length of items.
If items is a pattern, a period from that pattern becomes the list from which random selections are
made, and anew list is generated every period.

11.2.6. copier

The copi er - cl ass makes copies of periods from a sub-pattern. For example, three periods of
(rmake-copi er (make-cycle '(a b c¢) :for 1) :repeat 2 :merge t) wouldbe (A
A) (B B) (C O . Notethat entire periods (not individual items) are repeated, so in this example the
: for keyword was used to force periods to be of length one so that each item is repeated by the
: repeat count.

(rmake- copi er sub-pattern [:repeat repeat] [:nmerge mergel [:for for] [:nane
name] [:trace trace])
Generate a period from sub-pattern and repeat it repeat times. If merge is false (the default), each
repetition of a period from sub-pattern results in a period by default. If merge is true (non-null),
then all repeat repetitions of the period are merged into one result period by default. If the: f or
keyword is used, the same items are generated, but the items are grouped into periods determined
by the : f or parameter. If the : f or parameter is a pattern, it is evaluated every result period.
The repeat and merge values may be patterns that return a repeat count and a boolean value,
respectively. If so, these patterns are evaluated initially and after each repeat copies are made
(independent of the : f or keyword parameter, if any). The repeat value returned by a pattern can
also be negative. A negative number indicates how many periods of sub-pattern to skip. After
skipping these patterns, new repeat and merge values are generated.

11.2.7. accumulate

Theaccunul at e- cl ass forms the sum of numbers returned by another pattern. For example, each
period of (make-accurul ate (make-cycle "(1 2 -3))) is(1 3 0). The default output
period length is the length of the input period.

(make- accunul at esub-pattern [:for for] [:max maximum] [:mn minimum] [: name
name] [:trace trace])
Keep a running sum of numbers generated by sub-pattern. The default period lengths match the
period lengths from sub-pattern. If maximum (a pattern or a number) is specified, and the running
sum exceeds maxi mum, the running sum is reset to maximum. If minimum (a pattern or a number)
is specified, and the running sum falls below minimum, the running sum is reset to minimum. |f
minimum is greater than maximum, the running sum will be set to one of the two values.

XMUSIC AND ALGORITHMIC COMPOSITION Page 103

11.2.8. sum

The sum cl ass forms the sum of numbers, one from each of two other patterns. For example, each
period of (make- sum (make-cycle "(1 2 3)) (nake-cycle (4 5 6))) is(5 7 9).
The default output period length is the length of the input period of the first argument. Therefore, the first
argument must be a pattern, but the second argument can be a pattern or a number.

(make-sunx y [:for for] [:name name] [:trace trace])
Form sums of items (which must be numbers) from pattern x and pattern or number y. The
default period lengths match the period lengths from x.

11.2.9. product

The pr oduct - cl ass forms the product of numbers, one from each of two other patterns. For
example, each period of (make- product (make-cycle (1 2 3)) (nake-cycle "(4 5
6))) is(4 10 18). The default output period length is the length of the input period of the first
argument. Therefore, the first argument must be a pattern, but the second argument can be a pattern or a
number.

(make-productx y [:for for] [:name name] [:trace trace])
Form products of items (which must be numbers) from pattern x and pattern or number y. The
default period lengths match the period lengths from x.

11.2.10. eval
The eval - cl ass evaluates an expression to produce each output item. The default output period
lengthis 1.

(rmake-eval expr [:for for] [:name name] [:trace trace])
Evaluate expr to generate each item. If expr is a pattern, each item is generated by getting the next
item from expr and evaluating it.

11.2.11. length

The | engt h- cl ass generates periods of a specified length from another pattern. This is similar to
using the : f or keyword, but for many patterns, the : f or parameter aters the points at which other
patterns are generated. For example, if the palindrome pattern has an : el i de pattern parameter, the
value will be computed every period. If thereisalso a: f or parameter with avalue of 2, then : el i de
will be recomputed every 2 items. In contrast, if the palindrome (without a: f or parameter) is embedded
in alength pattern with alenght of 2, then the periods will al be of length 2, but the items will come from
default periods of the palindrome, and therefore the : el i de values will be recomputed at the beginnings
of default palindrome periods.

(make- | engt h pattern length-pattern [: name name] [:trace trace])
Make a pattern of class| engt h- cl ass that regroups items generated by a pattern according to
pattern lengths given by length-pattern. Note that length-pattern is not optional: There is ho
default pattern length and no : f or keyword.

Page 104 NYQUIST MANUAL

11.2.12. window

Thewi ndow- cl ass groupsitems from another pattern by using a sliding window. If the skip valueis
1, each output period is formed by dropping the first item of the previous perioda and appending the next
item from the pattern. The skip value and the output period length can change every period. For a simple
example, if the period length is 3 and the skip value is 1, and the input pattern generates the sequence A,
B, C, ..., then the output periods will be (A B C),(BCD),(CDE),(DEF),....

(make-w ndow pattern length-pattern skip-pattern [: name name] [:trace trace])
Make a pattern of classwi ndow- cl ass that regroups items generated by a pattern according to
pattern lengths given by length-pattern and where the period advances by the number of items
given by skip-pattern. Note that length-pattern is not optional: There is no default pattern length
andno: f or keyword.

11.2.13. markov

Themar kov- cl ass generatesitems from a Markov model. A Markov model generates a sequence of
states according to rules which specify possible future states given the most recent states in the past. For
example, states might be pitches, and each pitch might lead to a choice of pitches for the next state. In the
mar kov- cl ass, states can be either symbols or numbers, but not arbitrary values or patterns. This
makes it easier to specify rules. However, symbols can be mapped to arbitrary values including pattern
objects, and these become the actual generated items. By default, all future states are weighted equally,
but weights may be associated with future states. A Markov model must be initialized with a sequence of
past states using the : past keyword. The most common form of Markov model is a"first order Markov
model" in which the future item depends only upon one past item. However, higher order models where
the future items depend on two or more past items are possible. A "zero-order” Markov model, which
depends on no past states, is essentialy equivalent to the random pattern. As an example of afirst-order
Markov pattern, two periods of (nake-markov "((a -> b ¢) (b -> ¢) (c -> a))
:past '(a)) mightbe(C A C (ABCQ.

(make- mar kovrules [: past past] [:produces produces] [:for for] [:nane name

[:trace trace])

Generate a sequence of items from a Markov process. The rules parameter has the form: (prevl
prev2 ... prevn -> nextl next2 ... nextn) where prevl through prevn represent a
sequence of most recent (past) states. The symbol * is treated specially: it matches any previous
state. If prevl through prevn (which may be just one state as in the example above) match the
previousy generated states, this rule applies. Note that every rule must specify the same number
of previous states; this number is known as the order of the Markov model. Thefirst rulein rules
that applies is used to select the next state. If no rule applies, the next state is NI L (which is a
valid state that can be used in rules). Assuming a rule applies, the list of possible next states is
specified by nextl through nextn. Notice that these are alternative choices for the next state, not a
sequence of future states, and each rule can have any number of choices. Each choice may be the
state itself (asymbol or a number), or the choice may be alist consisting of the state and aweight.
The weight may be given by a pattern, in which case the next item of the pattern is obtained every
time the rule is applied. For example, this rules says that if the previous states were A and B, the
next state can be A with aweight of 0.5 or C with an implied weight of 1. (A B -> (A 0.5)
CO) . The default length of the period is the length of rules. The past parameter must be provided.
Itisalist of states whose length matches the order of the Markov model. The keyword parameter
produces may be used to map from state symbols or numbers to other values or patterns. The
parameter is a list of alternating symbols and values. For example, to map A to 69 and B to 71,
use(list "a 69 'b 71). You can aso map symbols to patterns, for example (1 i st ' a
(make-cycle ' (57 69)) 'b (make-random ' (59 71))). The next item of the
pattern is is generated each time the Markov model generates the corresponding state. Finally,

XMUSIC AND ALGORITHMIC COMPOSITION Page 105

the produces keyword can be : eval , which means to evaluate the Markov model state. This
could be useful if states are Nyquist global variablessuchasC4, CS4, D4,]..., which
eval uate to nunerical values (60, 61, 62, :

(mar kov- cr eat e-r ul essequence order [generalize])

Generate a set of rules suitable for the make- mar kov function. The sequence is a ‘‘typica’’
sequence of states, and order is the order of the Markov model. It is often the case that a sample
sequence will not have atransition from the last state to any other state, so the generated Markov
model can reach a ‘‘dead end’” where no rule applies. This might lead to an infinite stream of
NIL’s. To avoid this, the optional parameter generalize can be set tot (true), indicating that there
should be a fallback rule that matches any previous states and whose future states are weighted
according to their frequency in sequence. For example, if sequence contains 5 A’s, 5 B’sand 10
G's, thedefault rulewill be (* -> (A 5) (B 5) (G 10)). Thisrulewill be appended to
theend so it will only apply if no other rule does.

11.3. Random Number Generators

Thedi stri butions. | sp library implements random number generators that return random values
with various probability distributions. Without this library, you can generate random numbers with
uniform distributions. In a uniform distribution, all values are equally likely. To generate a random
integer in some range, use random To generate a real number (FLONUM) in some range, use
real -random (or rrandomif the range is 0-1). But there are other interesting distributions. For
example, the Gaussian distribution is often used to model real-world errors and fluctuations where values
are clustered around some central value and large deviations are more unlikely than small ones. See
Dennis Lorrain, "A Panoply of Stochastic 'Canons’," Computer Music Journal vol. 4, no. 1, 1980, pp.
53-81.

In most of the random number generators described below, there are optional parameters to indicate a
maximum and/or minimum value. These can be used to truncate the distribution. For example, if you
basically want a Gaussian distribution, but you never want a value greater than 5, you can specify 5 as the
maximum value. The upper and lower bounds are implemented simply by drawing a random number
from the full distribution repeatedly until a number falling into the desired range is obtained. Therefore, if
you select an acceptable range that is unlikely, it may take Nyquist a long time to find each acceptable
random number. The intended use of the upper and lower bounds is to weed out values that are already
fairly unlikely.

(l'inear-di st Q)
Return a FLONUM value from a linear distribution, where the probability of a value decreases
linearly from zero to g which must be greater than zero. (See Figure 7.) The linear distribution is
useful for generating for generating time and pitch intervals.

(exponenti al -di st deta [high])

Return a FLONUMvalue from an exponentia distribution. The initial downward slope is steeper
with larger values of delta, which must be greater than zero. (See Figure 8. The optional high
parameter puts an artificial upper bound on the return value. The exponential distribution
generates values greater than 0, and can be used to generate time intervals. Natural random
intervals such as the time intervals between the release of atomic particles or the passing of
yellow volkswagons in traffic have exponential distributions. The exponential distribution is
memory-less: knowing that a random number from this distribution is greater than some value
(e.g. anote duration is at least 1 second) tells you nothing new about how soon the note will end.
This is a continuous distribution, but geonetri c- di st (described below) implements the
discrete form.

Page 106 NYQUIST MANUAL

n.i 0.4 0B n.& 1

Figure7: TheLinear Distribution, g = 1.

1 i 2 ¢ 5
Figure 8: The Exponential Distribution, delta = 1.

(gama-di st nu [high])
Return a FLONUMvalue from a Gamma distribution. The value is greater than zero, has a mean of
nu (a FI XNUM greater than zero), and a mode (peak) of around nu - 1. The optiona high
parameter puts an artificial upper bound on the return value.

(bil ateral -exponential -di st xmu tau [low] [high])

Returns a FLONUMvalue from a bilateral exponential distribution, where xmu is the center of the
double exponential and tau controls the spread of the distribution. A larger tau gives a wider
distribution (greater variance), and tau must be greater than zero. The low and high parameters
give optiona artificia bounds on the minimum and maximum output values, respectively. This
distribution is similar to the exponential, except it is centered at 0 and can output negative values
as well. Like the exponential, it can be used to generate time intervals, however, it might be
necessary to add alower bound so as not to compute a negative time interval.

(cauchy-di st tau [low] [high])

XMUSIC AND ALGORITHMIC COMPOSITION Page 107

n.i

015

0.1

0.0k

i 3 k § 10

Figure9: The Gamma Distribution, nu = 4.

-4 ¥ i ¢
Figure 10: The Bilateral Exponential Distribution.

Returns a FLONUMfrom the Cauchy distribution, a symetric distribution with a high peak at zero
and a width (variance) that increases with parameter tau, which must be greater than zero. The
low and high parameters give optional artificial bounds on the minimum and maximum output
values, respectively.

(hyperbol i c-cosine-dist [low] [high])
Returns a FLONUMvalue from the hyperbolic cosine distribution, a symetric distribution with its
peak at zero. The low and high parameters give optiona artificial bounds on the minimum and
maximum output values, respectively.

(logistic-dist apha beta [low] [high])
Returns a FLONUM value from the logistic distribution, which is symetric about the mean. The
alpha parameter primarily affects dispersion (variance), with larger values resulting in values
closer to the mean (less variance), and the beta parameter primarily influences the mean. The low
and high parameters give optiona artificial bounds on the minimum and maximum output values,

Page 108 NYQUIST MANUAL

Figure 11: The Cauchy Distribution, tau = 1.

Figure 12: The Hyperbolic Cosine Distribution.

respectively.

(arc-sine-dist)
Returns a FLONUMVvalue from the arc sine distribution, which outputs values between 0 and 1. It
is symetric about the mean of 1/2, but is more likely to generate values closer to 0 and 1.

(gaussi an-di st xmu sigma [low] [high])
Returns a FLONUM value from the Gaussian or Gauss-Laplace distribution, a linear function of
the normal distribution. It is symetric about the mean of xmu, with a standard deviation of sigma,
which must be greater than zero. The low and high parameters give optional artificial bounds on
the minimum and maximum output val ues, respectively.

(beta-dist a b)
Returns a FLONUM value from the Beta distribution. This distribution outputs values between 0
and 1, with outputs more likely to be close to O or 1. The parameter a controls the height
(probability) of the right side of the distribution (at 1) and b controls the height of the left side (at

XMUSIC AND ALGORITHMIC COMPOSITION Page 109

£
Figure 13: The Logistic Distribution, alpha= 1, beta = 2.

-

0.3 0. 0B 0% 1
Figure 14: The Arc Sine Distribution.

0). Thedistribution is symetric about 1/2 when a = b.

(bernoul l'i-dist px1 [x1] [x2])
Returns either x1 (default value is 1) with probability px1 or x2 (default value is 0) with

probability 1 - px1. The value of px1 should be between 0 and 1. By convention, aresult of x1 is
viewed as a success while x2 is viewed as afailure.

(binomal-dist np
Returns a Fl XNUMvalue from the binomial distribution, where n is the number of Bernoulli trials

run (aFl XNUM and p is the probability of successin the Bernoulli trial (a FLONUMfrom O to 1).
The mean isthe product of n and p.

(geonetric-dist p
Returns a FI XNUM value from the geometric distribution, which is defined as the number of

failures before a success is achieved in a Bernoulli trial with probability of success p (a FLONUM
from 0to 1).

Page 110 NYQUIST MANUAL

-4 i 4

Figure 15: The Gauss-Laplace (Gaussian) Distribution, xmu = 0, sigma = 1.

¥ L
0. 0.4 0B n.E 1
Figure 16: The Beta Distribution, alpha = .5, beta = .25.

(poi sson-di st delta)
Returns a FI XNUM value from the Poisson distribution with a mean of delta (a FI XNUM). The
Poisson distribution is often used to generate a sequence of time intervals, resulting in random but
often pleasing rhythms.

11.4. Score Generation and Manipulation

A common application of pattern generators isto specify parameters for notes. (It should be understood
that ‘‘notes’’ in this context means any Nyquist behavior, whether it represents a conventional note, an
abstract sound object, or even some micro-sound event that isjust alow-level component of a hierarchical
sound organization. Similarly, ‘‘score’’ should be taken to mean a specification for a sequence of these
‘‘notes’’) The score-gen macro (defined by loading xm | sp) establishes a convention for
representing scores and for generating them using patterns.

XMUSIC AND ALGORITHMIC COMPOSITION Page 111

Bernoulli Distrilation, p=.75

Figure 17: The Bernoulli Distribution, px1 = .75.

Binemial Distition,n=5%,p=.5

Figure 18: The Binomial Distribution,n=5, p= 5.

Theti med- seq macro, described in Section 5.4, already provides a way to represent a‘‘score’’ asa
list of expressions. The Xmusic representation goes a bit further by specifying that all notes are specified

Page 112 NYQUIST MANUAL

Geometric Distribution, p=.4

0 1 2 3 4 3 B Mare

Figure 19: The Geometric Distribution, p = .4.

Poisson Distrilution, delta=73

0 1 2 3 4 3 B Mare

Figure 20: The Poisson Distribution, delta = 3.

by an alternation of keywords and values, where some keywords have specific meanings and
inter pretations.

XMUSIC AND ALGORITHMIC COMPOSITION Page 113

The basic idea of scor e- gen isyou provide a template for notes in a score as a set of keywords and
values. For example,
(setf pitch-pattern (nake-cycle (list c4 d4 e4 f4)))

(score-gen :dur 0.4 :nane ’'ny-sound
cpitch (next pitch-pattern) :score-len 9)

generates a score of 9 notes as follows:

((0 O (SCORE-BEG N-END 0 3.6))

(MY- SOUND : PI TCH 60))

.4 (MY- SOUND : Pl TCH 62))
.4 (MY- SOUND : Pl TCH 64))
.4 (MY- SOUND : Pl TCH 65))
.4 (MY- SOUND : Pl TCH 60))
(MY- SOUND : PI TCH 62))

.4 (MY- SOUND : Pl TCH 64))
.4 (MY- SOUND : Pl TCH 65))
.4 (MY- SOUND : Pl TCH 60)))

The use of keywords like : Pl TCH helps to make scores readable and easy to process without specific
knowledge of about the functions called in the score. For example, one could write a transpose operation
to transform all the: pi t ch parametersin a score without having to know that pitch is the first parameter
of pl uck and the second parameter of pi ano- not e. Keyword parameters are also used to give
flexibility to note specification with scor e- gen. Since this approach requires the use of keywords, the
next section is a brief explanation of how to define functions that use keyword parameters.

—~
o

e T Y Y e Ve N WP N
WhNDNERPOO

NOROOIN®AO
OCOOR~,ROOOCOI~

11.4.1. Keyword Parameters

Keyword parameters are parameters whose presence is indicated by a special symbol, called a keyword,
followed by the actual parameter. Keyword parameters may have default values that are used if no actual
parameter is provided by the caller of the function.

To specify that a parameter is a keyword parameter, use &k ey to specify that the following parameters
are keyword parameters. For example, here is afunction that accepts keyword parameters and invokes the
p! uck function:

(defun k-pluck (&key pitch dur)
(pluck pitch dur))
Now, we can cal k-pluck with keyword parameters. The keywords are simply the formal parameter
names with a prepended colon character (: pi t ch and : dur in this example), so a function call would
look like:
(pluck :key c3 :dur 3)

Usudly, it is best to give keyword parameters useful default values. That way, if a parameter such as
: dur ismissing, a reasonable default value (1) can be used automatically. If no default value is given,
the NI L will be used. It is never an error to omit a keyword parameter, but the called function can check
to see if a keyword parameter was supplied or not. Default values are specified by placing the parameter
and the default value in parentheses:
(defun k-pluck (&key (pitch 60) (dur 1))
(pluck pitch dur))

Now, we can call (k-pluck :pitch c¢3) with no duration, (k- pl uck :dur 3) with only a
duration, or even (k- pl uck) with no parameters.

There is additional syntax to specify an alternate symbol to be used as the keyword and to alow the

Page 114 NY QUIST MANUAL

called function to determine whether or not a keyword parameter was supplied, but these features are
little-used. See the XLISP manual for details.

11.4.2. Using score-gen

The scor e- gen macro computes a score based on keyword parameters. Some keywords have a
special meaning, while others are not interpreted but merely placed in the score. The resulting score can
be synthesized usingt i med- seq (see Section 5.4).

The form of acall to score-genissimply (score-gen :kl el :k2 €2 ...), wherethek's
are keywords and the €'s are expressions. A score is generated by evaluating the expressions once for
each note and constructing a list of keyword-value pairs. A number of keywords have specia
interpretations. The rules for interpreting these parameters will be explained through a set of "How do |
.. questions:

How many notes will be generated? The keyword parameter : scor e- | en specifies an upper bound
on the number of notes. The keyword : scor e- dur specifies an upper bound on the starting time of the
last note in the score. (To be more precise, the : scor e- dur bound is reached when the default starting
time of the next note is greater than or equal to the : scor e- dur value. This definition is necessary
because note times are not strictly increasing.) When either bound is reached, score generation ends. At
least one of these two parameters must be specified or an error is raised. These keyword parameters are
evaluated just once and are not copied into the parameter lists of generated notes.

What is the duration of generated notes? The keyword : dur defaults to 1 and specifies the nomina
duration in seconds. Since the generated note list is compatible with t i med- seq, the starting time and
duration (to be precise, the stretch factor) are not passed as parameters to the notes. Instead, they control
the Nyquist environment in which the note will be evaluated.

What is the start time of a note? The default start time of the first note is zero. Given a note, the default
start time of the next note is the start time plus the inter-onset time, which is given by the : i oi
parameter. If no : i oi parameter is specified, the inter-onset time defaults to the duration, given by
: dur . Inall cases, the default start time of a note can be overridden by the keyword parameter : t i e.

When does the score begin and end? The behavior SCORE- BEG N- END contains the beginning and
ending of the score (these are used for score manipulations, e.g. when scores are merged, their begin
times can be aligned.) When ti ned- seq is used to synthesize a score, the SCORE- BEG N- END
marker is not evaluated. Thescor e- gen macroinsertsa‘‘note’’ of theform (0 O (SCORE- BEG N-
END begin-time end-time)) at the time given by the : begi n keyword, with begin-time and end-time
determined by the : begi n and : end keyword parameters, respectively. If the :begin keyword is not
provided, the score begins at zero. If the: end keyword is not provided, the score ends at the default start
time of what would be the next note after the last note in the score (as described in the previous
paragraph). Note: if : t i me isused to compute note starting times, and these times are not increasing, it is
strongly advised to use : end to specify an end time for the score, because the default end time may be
anywhere in the middle of the generated sequence.

What function is called to synthesize the note? The : nane parameter names the function. Like other
parameters, the value can be any expression, including something like (next fn-nanme-pattern),
allowing function names to be recomputed for each note. The default valueisnot e.

XMUSIC AND ALGORITHMIC COMPOSITION Page 115

Can | make parameters depend upon the starting time or the duration of the note? Parameter
expressions can use the variable sg: t i nme to access the start time of the note, sg: i oi to access the
inter-onset time, and sg: dur to access the duration (stretch factor) of the note. Also, sg: count counts
how many notes have been computed so far, starting at 0. The order of computation is: sg: ti e first,
thensg: i oi andsg: dur, sofor example, an expression to computesg: dur candependonsg: i oi .

Can parameters depend on each other? The keyword : pr e introduces an expression that is evaluated
before each note, and : post provides an expression to be evaluated after each note. The : pre
expression can assign one or more global variables which are then used in one or more expressions for
parameters.

How do | debug scor e- gen expressions? You can set the : t r ace parameter to true (t) to enable a
print statement for each generated note.

How can | save scores generated by scor e- gen that | like? If the keyword parameter : save isset to
a symbol, the global variable named by the symboal is set to the value of the generated sequence. Of
course, the value returned by scor e- gen isjust an ordinary list that can be saved like any other value.

In summary, the following keywords have specia interpretations in scor e- gen: : begin, : end,
:time,:dur,:nane,:ioi,:trace,:save, :score-len,:score-dur,:pre,:post. All
other keyword parameters are expressions that are evaluated once for each note and become the
parameters of the notes.

11.4.3. Score Manipulation

Nyquist encourages the representation of music as executable programs, or behaviors, and there are
various ways to modify behaviors, including time stretching, transposition, etc. An alternative to
composing executable programs is to manipulate scores as editable data. Each approach has its strengths
and weaknesses. This section describes functions intended to manipulate Xmusic scores as generated by,
or at least in the form generated by, scor e- gen. Recall that this means scores are lists of events (e.g.
notes), where events are three-element lists of the form (time duration expression, and where expression
is astandard lisp function call where all parameters are keyword parameters. In addition, the first ‘‘note’’
may be the special SCORE- BEG N- END expression. If thisis missing, the score begins at zero and ends
at the end of the last note.

For convenience, a set of functions is offered to access properties of events (or notes) in scores.
Although lisp functions such as car, cadr, and caddr can be used, code is more readable when more
mnemonic functions are used to access events.

(event-time event)
Retrieve the time field from an event.

(event-set-tinme event time)
Construct a new event where the time of event is replaced by time.

(event - dur event)
Retrieve the duration (i.e. the stretch factor) field from an event.

(event -set-dur event dur)
Construct a new event where the duration (or stretch factor) of event isreplaced by dur.

(event - expressi on event)
Retrieve the expression field from an event.

Page 116 NYQUIST MANUAL

(event -set - expressi on event dur)
Construct a new event where the expression of event is replaced by expression.

(event - end event)
Retrieve the end time of event, itstime plusits duration.

(expr-has-attr expression attribute)
Test whether a score event expression has the given attribute.

(expr-get-attr expression attribute [default])
Get the value of the given attribute from a score event expression. If attribute is not present,
return default if specified, and otherwiseni | .

(expr-set-attr expr attribute value)
Construct a new expression identical to expr except that the attribute has value.

(event-has-attr event attribute)
Test whether a given score event’ s expression has the given attribute.

(event-get-attr event attribute [default])
Get the value of the given attribute from a score event’'s expression. If attribute is not present,
return default if specified, and otherwiseni | .

(event-set-attr event attribute value)
Construct a new event identical to event except that the attribute has value.

Functions are provided to shift the starting times of notes, stretch times and durations, stretch only
durations, add an offset to a keyword parameter, scale a keyword parameter, and other manipulations.
Functions are also provided to extract ranges of notes, notes that match criteria, and to combine scores.
Most of these functions (listed below in detail) share a set of keyword parameters that optionally limit the
range over which the transformation operates. The: fr om i ndex and : t 0- i ndex parameters specify
the index of the first note and the index of the last note to be changed. If these numbers are negative, they
are offsets from the end of the score, e.g. -1 denotes the last note of the score. The: fromti ne and
:to-tinme indicate a range of starting times of notes that will be affected by the manipulation. Only
notes whose time is greater than or equal to the from-time and strictly less than the to-time are modified.
If both index and time ranges are specified, only notes that satisfy both constraints are selected.

(score-sorted score)
Test if scoreis sorted.

(score-sort score [copy-flag])
Sort the notes in a score into start-time order. If copy-flag is nil, this is a destructive operation
which should only be performed if the top-level scorelist is afresh copy that is not shared by any
other variables. (The copy-flag is intended for internal system use only.) For the following
operations, it is assumed that scores are sorted, and all operations return a sorted score.

(score-shift score offset [:fromindex i] [:to-index j] [:fromtine X] [:to-
time y])
Add a constant offset to the starting time of a set of notes in score. By default, all notes are
modified, but the range of notes can be limited with the keyword parameters. The begin time of
the score is not changed, but the end time is increased by offset. The original score is not
modified, and a new scoreis returned.

(score-stretch score factor [:dur dur-flag] [:time timeflagl [:fromindex i]
[:to-index j] [:fromtinme X] [:to-tine y])
Stretch note times and durations by factor. The default dur-flag is non-null, but if dur-flag is null,
the original durations are retained and only times are stretched. Similarly, the default time-flag is
non-null, but if time-flag is null, the original times are retained and only durations are stretched. If
both dur-flag and time-flag are null, the score is not changed. If a range of notes is specified,
times are scaled within that range, and notes after the range are shifted so that the stretched region

XMUSIC AND ALGORITHMIC COMPOSITION Page 117

does not create a"hole" or overlap with notes that follow. If the range begins or ends with atime
(via:fromtimeand: to-tine), timestretching takes place over the indicated time interval
independent of whether any notes are present or where they start. In other words, the “‘rests” are
stretched along with the notes. The original score is not modified, and a new score is returned.

(score-transpose score keyword amount [:fromindex i] [:to-index j] [:from
time x| [:to-tine y])
For each note in the score and in any indicated range, if there is a keyword parameter matching
keyword and the parameter value is a number, increment the parameter value by amount. For
example, to tranpose up by a whole step, write (scor e-transpose 2 :pitch score).
The original scoreis not modified, and anew score is returned.

(score-scal e score keyword amount [:fromindex i] [:to-index j] [:fromtine
X [:to-time y])
For each note in the score and in any indicated range, if there is a keyword parameter matching
keyword and the parameter value is a number, multiply the parameter value by amount. The
original scoreis not modified, and a new score is returned.

(score-sustain score factor [:fromindex i] [:to-index j] [:fromtinme X
[:to-time V])
For each note in the score and in any indicated range, multiply the duration (stretch factor) by
amount. This can be used to make notes sound more legato or staccato, and does not change their
starting times. The original score is not modified, and a new scoreis returned.

(score-voice score replacement-list [:fromindex i] [:to-index j] [:fromtine
X [:to-time y])
For each note in the score and in any indicated range, replace the behavior (function) name using
replacement-list, which has the format: ((oldl newl) (old2 new2) ...), where oldi
indicates a current behavior name and newi is the replacement. If oldi is*, it matches anything.
For example, to replace my-note-1 by tronbone and mny-note-2 by horn, use
(score-voice score '((my-note-1 tronbone) (mnmy-note-2 horn))). To
replace all instruments with pi ano, use (score-voice score ' ((* piano))). The
original scoreis not modified, and a new score is returned.

(score-nmerge scorel score2 . ..)
Create a new score containing al the notes of the parameters, which are al scores. The resulting
notes retain their original times and durations. The merged score begin time is the minimum of
the begin times of the parameters and the merged score end time is the maximum of the end times
of the parameters. The original scores are not modified, and a new score is returned.

(score-append scorel score2 .. .)
Create a new score containing al the notes of the parameters, which are all scores. The begin
time of the first score is unaltered. The begin time of each other score is aigned to the end time of
the previous score; thus, scores are “*spliced’’ in sequence. The origina scores are not modified,
and a new score isreturned.

(score-sel ect score predicate [:fromindex i] [:to-index j] [:fromtinme X

[:to-time y] [:reject flag])

Select (or reject) notes to form anew score. Notes are selected if they fall into the given ranges of
index and time and they satisfy predicate, a function of three parameters that is applied to the
start time, duration, and the expression of the note. Alternatively, predicate may bet , indicating
that all notes in range are to be selected. The selected notes along with the existing score begin
and end markers, are combined to form a new score. Alternatively, if the: r ej ect parameter is
non-null, the notes not selected form the new score (in other words the selected notes are rejected
or removed to form the new score). The origina score is not modified, and a new score is
returned.

(score-set-begin score time)
The begin time from the score’s SCORE- BEG N- END marker is set to time. The original scoreis

Page 118 NYQUIST MANUAL

not modified, and a new score is returned.

(score-get-begi n score)
Return the begin time of the score.

(score-set-end score time)
The end time from the score’'s SCORE- BEG N- END marker is set to time. The original scoreis
not modified, and a new score is returned.

(score-get-end score)
Return the end time of the score.

(score-nust - have- begi n- end score)
If score does not have a begin and end time, construct a score with a SCORE- BEG N- END
expression and return it. If score already has a begin and end time, just return the score. The
orignal score isnot modified.

(score-filter-1length score cutoff)
Remove notes that extend beyond the cutoff time. This is similar to scor e- sel ect, but the
here, events are removed when their nominal ending time (start time plus duration) exceeds the
cutoff, whereasthe : t o- t i me parameter is compared to the note' s start time. The original score
is not modified, and a new scoreis returned.

(score-repeat score n)
Make a sequence of n copies of score. Each copy is shifted to that it’'s begin time aligns with the
end time of the previous copy, asin scor e- append. The original scoreis not modified, and a
new scoreis returned.

(score-stretch-to-1ength score length)
Stretch the score so that the end time of the score is the score’s begin time plus length. The
original scoreis not modified, and a new scoreis returned.

(score-filter-overl ap score)
Remove overlapping notes (based on the note start time and duration), giving priority to the
positional order within the note list (which is also time order). The original score is not modified,
and anew scoreisreturned.

(score-print score)
Print a score with one note per line. Returnsni | .

(score-play score)
Play scoreusingt i med- seq to convert the score to a sound, and pl ay to play the sound.

(score-adjacent-events score function [:fromindex i] [:to-index j] [:from
time x| [:to-tine y])
Cdl (function A B C), where A, B, and C are consecutive notes in the score. The result
replaces B. If theresult isni | , B is deleted, and the next call will be (function A C D) , etc. The
first call isto (function ni | AB) andthelastisto (function Y Z nil). If thereisjust one
note in the score, (function nil A nil) iscaled. Function calls are not made if the note is
outside of the indicated range. This function allows notes and their parameters to be adjusted
according to their immediate context. The original score is not modified, and a new score is
returned.

(score-apply score function [:fromindex i] [:to-index j] [:fromtinme X
[:to-time Vy])
Replace each note in the score with the result of (function time dur expression) , where time, dur,
and expression are the time, duration, and expression of the note. If arange is indicated, only
notesin the range are replaced. The original scoreis not modified, and a new score is returned.

(score-indexof score function [:fromindex i] [:to-index j] [:fromtime X
[:to-time Vy])
Return the index (position) of the first score event (in range) for which applying function using

XMUSIC AND ALGORITHMIC COMPOSITION Page 119

(function time dur expression) returns true.

(score-last-indexof score function [:fromindex i] [:to-index j] [:from
time x] [:to-tine vy])
Return the index (position) of the last score event (in range) for which applying function using
(function time dur expression) returns true.

(score-random ze-start score amt [:fromindex i] [:to-index j] [:from
time x] [:to-tine y])
Alter the start times of notes by a random amount up to plus or minus amt. The original scoreis
not modified, and a new score is returned.

11.4.4. Xmusic and Standard MIDI Files

Nyquist has a general facility to read and write MIDI files. You can even trandate to and from a text
representation, as described in Chapter 8. It is also useful sometimes to read notes from Standard MIDI
Files into Xmusic scores and vice versa. At present, Xmusic only translates notes, ignoring the various
controls, program changes, pitch bends, and other messages.

MIDI notes are transated to X music score events as follows:

(time dur (NOTE : chan channel
:pitch keynum : vel velocity)),

where channel, keynum, and velocity come directly from the MIDI message (channels are numbered
starting from zero). Note also that note-off messages are implied by the stretch factor dur which is
duration in seconds.

(score-read-snf filename)

Read a standard MIDI file from filename. Return an Xmusic score, or ni | if the file could not be
opened. The start time is zero, and the end time is the maximum end time of all notes. A very
limited interface is offered to extract MIDI program numbers from the file: The global variable
rslt issettoalist of MIDI program numbers for each channdl. E.g. if *rslt* is(0 20
77) , then program for channel 0 is O, for channel 1 is 20, and for channel 2 is 77. Program
changes were not found on other channels. The default program number is 0, so in this example,
it is not known whether the program 0 on channel O is the result of areal MIDI program change
command or just a default value. If more than one program change exists on a channel, the last
program number is recorded and returned, so this information will only be completely correct
when the MIDI file sends single program change per channel before any notes are played. This,
however, is a fairly common practice. Note that the list returned as *r sl t * can be passed to
score-wite-snf, described below.

(score-wite-snf score filename [programs])
Write a standard MIDI file to filename with notes in score. In this function, every event in the
score with a: pi t ch attribute, regardless of the ‘‘instrument’’ (or function name), generates a
MIDI note, using the : chan attribute for the channel (default 0) and the : vel attribute for
velocity (default 100). There is no facility (in the current implementation) to issue control
changes, but to allow different instruments, MIDI programs may be set in two ways. The simplest
is to associate programs with channels using the optional programs parameter, which is simply a
list of up to 16 MIDI program numbers. Corresponding program change commands are added to
the beginning of the MIDI file. If programs has less than 16 elements, program change
commands are only sent on the first n channels. The second way to issue MIDI program changes
isto add a: pr ogr amkeyword parameter to a note in the score. Typicaly, the note will have a
:pitch of nil sothat no actual MIDI note-on message is generated. If program changes and
notes have the same starting times, their relative playback order is undefined, and the note may be
cut off by an immediately following program change. Therefore, program changes should occur

Page 120 NYQUIST MANUAL

dightly, e.g. 1 ms, before any notes. Program numbers and channels are numbered starting at
zero, matching the internal MIDI representation. This may be one less than displayed on MIDI
hardware, sequencers, etc.

11.4.5. Workspaces

When working with scores, you may find it necessary to save them in files between work sessions. This
is not an issue with functions because they are normally edited in files and loaded from them. In contrast,
scores are created as Lisp data, and unless you take care to save them, they will be destroyed when you
exit the Nyquist program.

A simple mechanism called a workspace has been created to manage scores (and any other Lisp data,
for that matter). A workspace is just a set of lisp global variables. These variables are stored in the file
wor kspace. | sp. For simplicity, there is only one workspace, and no backups or versions are
maintained, but the user is free to make backups and copies of wor kspace. | sp. To help remember
what each variable is for, you can aso associate and retrieve a text string with each variable. The
following functions manage workspaces.

In addition, when a workspace is loaded, you can request that functions be called. For example, the
workspace might store descriptions of a graphical interface. When the workspace is loaded, a function
might run to convert saved data into a graphical interface. (Thisis how dliders are saved by the IDE.)

(add-t o- wor kspace symbol)
Adds aglobal variable to the workspace. The symbol should be a (quoted) symbol.

(save-wor kspace)
All global variables in the workspace are saved to wor kspace. | sp (in the current directory),
overwriting the previousfile.

(descri be symbol [description])
If description, a text string, is present, associate description with the variable named by the
symbol. If symbol is not already in the workspace, it is added. If description is omitted, the
function returns the current description (from a previous call) for symbol.

(add- acti on-t o- wor kspacesymbol)
Requests that the function named by symbol be called when the workspace is loaded (if the
function is defined).

To restore a workspace, use (| oad "wor kspace") . This restores the values of the workspace
variables to the values they had when save-wor kspace was last caled. It also restores the
documentation strings, if set, by descri be. If you load two or more wor kspace. | sp files, the
variables will be merged into a single workspace. The current set of workspace variables are saved in the
list *wor kspace*. To clear the workspace, set *wor kspace* to ni | . This does not delete any
variables, but means that no variables will be saved by save- wor kspace until variables are added

again.

Functions to be called are saved in the list *wor kspace-acti ons*. to clear the functions, set
wor kspace- acti ons to nil. Restore functions to the list with
add- acti on-t o-wor kspace.

XMUSIC AND ALGORITHMIC COMPOSITION Page 121

11.4.6. Utility Functions
This chapter concludes with details of various utility functions for score manipulation.

(patternp expression)
Test if expression is an Xmusic pattern.

(params-transpose params keyword amount)
Add a transposition amount to a score event parameter. The params parameter is a list of
keyword/value pairs (not preceded by afunction name). The keyword is the keyword of the value
to be altered, and amount is a number to be added to the value. If ho matching keyword is present
in params, then params is returned. Otherwise, a new parameter list is constructed and returned.
The original paramsis not changed.

(paramns-scal e params keyword amount)
Scale a score event parameter by some factor. This is like par ans-t r anspose, only using
multiplication. The params list is a list of keyword/value pairs, keyword is the parameter
keyword, and amount is the scale factor.

(interpolate x x1 yl x2 y2)
Linearly interpolate (or extrapolate) between points (x1, y1) and (x2, y2) to compute the y value
corresponding to x.

(intersection a b)
Compute the set intersection of listsa and b.

(union a b)
Compute the set union of listsa and b.

(set-difference a b)
Compute the set of all elements that arein a but not in b.

(subsetp a b)\
Returnstrue iff aisasubset of b, that is, each element of aisamember of b.

Page 122 NYQUIST MANUAL

NYQUIST LIBRARIES Page 123

12. Nyquist Libraries

Nyquist is always growing with new functions. Functions that are most fundamental are added to the
core language. These functions are automatically loaded when you start Nyquist, and they are
documented in the preceding chapters. Other functions seem less central and are implemented as lisp files
that you can load. These are called library functions, and they are described here.

To use alibrary function, you must first load the library, e.g. (1 oad " pi anosyn") loads the piano
synthesis library. The libraries are all located inthe | i b directory, and you should therefore include this
directory on your XLI SPPATH variable. (See Section 1.) Each library is documented in one of the
following sections. When you load the library described by the section, all functions documented in that
section become available.

12.1. Piano Synthesizer

The piano synthesizer (library name is pi anosyn. | sp) generates redistic piano tones using a
multiple wavetable implementation by Zheng (Geoffrey) Hua and Jim Beauchamp, University of Illinois.
Please see the notice about acknowledgements that prints when you load the file. Further informations
and example code can be found in denos/ pi ano. ht m There are severa useful functions in this
library:

(pi ano-not e duration step dynamic)
Synthesizes a piano tone. Duration is the duration to the point of key release, after which thereis
arapid decay. Sep is the pitch in half steps, and dynamic is approximately equivalent to a MIDI
key velocity parameter. Use avalue near 100 for aloud sound and near 10 for a soft sound.
(pi ano-not e-2 step dynamic)
Similar to pi ano- not e except the duration is nominally 1.0.
(pi ano-m di midi-file-name)
Use the piano synthesizer to play aMIDI file. The file name (a string) is given by midi-file-name.
(pi ano-m di 2fil e midi-file-name sound-file-name)
Use the piano synthesizer to play a MIDI file. The MIDI file is given by midi-file-name and the
(monophonic) result is written to the file named sound-file-name.

12.2. Dymanics Compression

To use these functions, load the file conpr ess. | sp. Thislibrary implements a compressor originaly
intended for noisy speech audio, but usable in a variety of situations. There are actually two compressors
that can be used in series. The first, conpr ess, is a fairly standard one: it detects signal level with an
RMS detector and uses table-lookup to determine how much gain to place on the original signal at that
point. One bit of cleverness here is that the RMS envelope is ‘‘followed” or enveloped using
snd- f ol | ow, which does |ook-ahead to anticipate peaks before they happen.

The other interesting feature is conpr ess- map, which builds a map in terms of compression and
expansion. For speech, the recommended procedure is to figure out the noise floor on the signal you are
compressing (for example, look at the signal where the speaker is not talking). Use a compression map
that leaves the noise alone and boosts signals that are well above the noise floor. Alas, the
conpr ess- map function is not written in these terms, so some head-scratching is involved, but the
results are quite good.

The second compressor is caled agc, and it implements automatic gain control that keeps peaks at or

Page 124 NYQUIST MANUAL

below 1.0. By combining conpr ess and agc, you can process poorly recorded speech for playback on
low-quality speakersin noisy environments. The conpr ess function modul ates the short-term gain to to
minimize the total dynamic range, keeping the speech at a generally loud level, and the agc function
rides the long-term gain to set the overal level without clipping.

(conpress-nmap compress-ratio compress-threshold expand-ratio expand-ratio [|imt: limit]

[transition: transition])

Construct a map for the compress function. The map consists of two parts. a compression part
and an expansion part. The intended use is to compress everything above compress-threshold by
compress-ratio, and to downward expand everything below expand-ratio by expand-ratio.
Thresholds are in dB and ratios are dB-per-dB. 0dB corresponds to a peak amplitude of 1.0 or
rms amplitude of 0.7 If the input goes above 0dB, the output can optionally be limited by setting
:limt (akeyword parameter) to T. This effectively changes the compression ratio to infinity
a0dB. If :1imt isnil (the default), then the compression-ratio continues to apply above
0dB.

Another keyword parameter, : t r ansi t i on, sets the amount below the thresholds (in dB) that a smooth
transition starts. The default is 0, meaning that there is no smooth transition. The smooth
transition is a 2nd-order polynomia that matches the slopes of the straight-line compression
curve and interpol ates between them.

It is assumed that expand-threshold <= compress-threshold <= 0 The gain is unity a 0dB so if
compression-ratio > 1, then gain will be greater than unity below 0dB.

The result returned by this function is a sound for use in the shape function. The sound mapsinput dB to
gain. Time 1.0 corresponds to 0dB, time 0.0 corresponds to -100 dB, and time 2.0 corresponds to
+100dB, so thisisa 100hz ‘*samplerate’’ sound. The sound givesgainin dB.

(db-aver age input)
Compute the average amplitude of input in dB.

(conpress input map risetime fall-time [lookahead])
Compress input using map, a compression curve probably generated by conpr ess- map (see
above). Adjustments in gain have the given rise-time and fall-time. Lookahead tells how far ahead
tolook at the signal, and is rise-time by default.

(agc input range rise-time fall-time [lookahead])
An automatic gain control applied to input. The maximum gain in dB is range. Peaks are
attenuated to 1.0, and gain is controlled with the given rise-time and fall-time. The look-ahead
time default isrise-time.

12.3. Clipping Softener

This library, in sof t en. | sp, was written to improve the quality of poorly recorded speech. In
recordings of speech, extreme clipping generates harsh high frequency noise. This can sound particulary
bad on small speakersthat will emphasize high frequencies. This problem can be ameliorated by low-pass
filtering regions where clipping occurs. The effect is to dull the harsh clipping. Intelligibility is not
affected by much, and the result can be much more pleasant on the ears. Clipping is detected ssimply by
looking for large signal values. Assuming 8-bit recording, thislevel is set to 126/127.

The function works by cross-fading between the normal signal and a filtered signal as opposed to
changing filter coefficients.

(soften-clipping snd cutoff)
Filter the loud regions of a signal where clipping is likely to have generated additional high
frequencies. The input signa is snd and cutoff is the filter cutoff frequency (4 kHz is
recommended for speech).

NYQUIST LIBRARIES Page 125

12.4. Graphical Equalizer

There' s nothing really ‘“graphical’’ about this library (gr apheq. | sp), but thisis a common term for
multi-band equalizers. This implementation uses Nyquist's eq- band function to split the incoming
signal into different frequency bands. Bands are spaced geometrically, e.g. each band could be one
octave, meaning that each successive band has twice the bandwidth. An interesting possibility is using
computed control functions to make the equalization change over time.

(nband-r angeinput gains lowf highf)
A graphical equalizer applied to input (a SOUND). The gain controls and number of bands is
given by gains, an ARRAY of SOUNDSs (in other words, a Nyquist multichannel SOUND). The
bands are geometrically equally spaced from the lowest frequency lowf to the highest frequency
highf (both are FLONUMS).

(nband input gains)
A graphical equalizer, identical to nband- r ange with arange of 20 to 20,000 Hz.

12.5. Sound Reversal

Ther ever se. | sp library implements functions to play sounds in reverse.

(s-reverse snd)
Reverses snd (a SOUND). Sound must be shorter than * max- r ever se- sanpl es*, which is
currently initialized to 25 million samples. Reversal allocates about 4 bytes per sample. This
function uses XLISP in the inner sample loop, so do not be surprised if it calls the garbage
collector a lot and runs slowly. The result starts at the starting time given by the current
environment (not necessarily the starting time of snd). If snd has multiple channels, a multiple
channel, reversed sound is returned.

s-read-reverse filename [:tine-offset offset] [:srate s [:dur dur]
[:nchans chang] [:format format] [:node mode] [:bits n] [:swap flag] }
This function is identical to s- r ead (see 5.5), except it reads the indicated samples in reverse.
Like s-reverse (see above), it uses XLISP in the inner loop, so it is slow. Unlike
s-reverse, s-read-rever se uses a fixed amount of memory that is independent of how
many samples are computed. Multiple channels are handled.

12.6. Time Delay Functions

Theti me- del ay- f ns. | sp library implements chorus, phaser, and flange effects.

(phaser snd)
A phaser effect applied to snd (a SOUND). There are no parameters, but feel free to modify the
source code of this one-liner.

(flange snd)
A flange effect applied to snd. To vary the rate and other parameters, see the source code.

(st ereo-chorussnd)
A chorus effect applied to snd, a SOUND (monophonic). The output is a stereo sound. All
parameters are built-in, but see the simple source code to make modifications.

(chorus snd maxdepth depth rate saturation)
A chorus effect applied to snd. All parameters may be arrays as usual. The maxdepth is a
FLONUM giving twice the maximum value of depth, which may be a FLONUM or a SOUND.
The chorus is implemented as a variable delay modulated by a sinusoid running at rate Hz (a
FLONUM). The sinusoid is scaled by depth and offset by maxdepth/2. The delayed signal is
mixed with the original, and saturation gives the fraction of the delayed signal (from 0 to 1) in

Page 126 NYQUIST MANUAL

the mix. A reasonable choice of parameter values is maxdepth = 0.05, depth = 0.025, rate = 0.5,
and saturation = 0.5.

12.7. Multiple Band Effects

The bandf x. | sp library implements several effects based on multiple frequency bands. The idea is
to separate a signal into different frequency bands, apply a slightly different effect to each band, and sum
the effected bands back together to form the result. This file includes its own set of examples. After
loading thefile, try (f2),(f3),(f4),and (f5) to hear them.

There is much room for expansion and experimentation with this library. Other effects might include
distortion in certain bands (for example, there are commercial effects that add distortion to low
frequencies to enhance the sound of the bass), separating bands into different channels for stereo or
multi-channel effects, adding frequency-dependent reverb, and performing dynamic compression,
limiting, or noise gate functions on each band. There are also opportunities for cross-synthesis. using the
content of bands extracted from one signal to modify the bands of another. The simplest of these would
be to apply amplitude envelopes of one sound to another. Please contact us (dannenberg@cs.cmu.edu) if
you are interested in working on this library.

(appl y- banded- del ay s lowp highp num-bands lowd highd fb wet)

Separates input SOUND s into FI XNUMnum-bands bands from a low frequency of lowp to a high
frequency of highp (these are FLONUNS that specify steps, not Hz), and applies a delay to each
band. The delay for the lowest band is given by the FLONUMIowd (in seconds) and the delay for
the highest band is given by the FLONUM highd. The delays for other bands are linearly
interpolated between these values. Each delay has feedback gain controlled by FLONUMfb. The
delayed bands are scaled by FLONUM wet, and the original sound is scaled by 1 - wet. All are
summed to form the result, a SOUND.

(appl y- banded- bass- boost s lowp highp numbands num-boost gain)
Applies a boost to low frequencies. Separates input SOUND s into FI XNUM num-bands bands
from a low frequency of lowp to a high frequency of highp (these are FLONUMS that specify
steps, not Hz), and scales the lowest num-boost (a FI XNUM) bands by gain, a FLONUM The
bands are summed to form the result, a SOUND.

(appl y- banded-tr ebl e- boost s lowp highp numbands num-boost gain)
Applies a boost to high frequencies. Separates input SOUND s into FI XNUM num-bands bands
from a low frequency of lowp to a high frequency of highp (these are FLONUMS that specify
steps, not Hz), and scales the highest num-boost (a FI XNUM bands by gain, a FLONUM The
bands are summed to form the result, a SOUND.

12.8. Granular Synthesis

Some granular synthesis functions are implemented in the gr an. | sp library file. There are many
variations and control schemes one could adopt for granular synthesis, so it is impossible to create a
single universal granular synthesis function. One of the advantages of Nyquist is the integration of control
and synthesis functions, and users are encouraged to build their own granular synthesis functions
incorporating their own control schemes. The gr an. | sp file includes many comments and is intended
to be auseful starting point.

(sf-granul ate sf-granulate filename grain-dur grain-dev ioi ioi-dev pitch-dev [file-start]
[file-end])
Granular synthesis using a sound file named filename as the source for grains. Each grain
duration is the sum of grain-dur and a random number from O to grain-dev. The inter-onset

NYQUIST LIBRARIES Page 127

interval between successive grains (which may overlap) is the sum of ioi and a random number
from O to ioi-dev. Grains are resampled at a rate between 1 and pitch-dev. The duration of the
result sound is determined by the stretch factor (not by the sound file), and grains are selected
from the file by more-or-less stepping through the file uniformly (the step size depends on the
total number of grains needed for the output.) The optional parameters give a starting point and
ending point (in seconds) from which to take samples from the file. To achieve a rich granular
synthesis effect, it is often a good idea to sum four or more copies of sf - gr anul at e together.
(Seethegr an-t est functioningran. | sp.)

12.9. MIDI Utilities
Them di show. | sp library has functions that can print the contents fo MIDI files. Thisintended as a
debugging aid.
(mdi-showfile fileename)
Print the contents of a MIDI file to the console.

(m di - show the-seq [out-file])
Print the contents of the sequence the-seq to the file out-file (whose default value is the console.)

12.10. Reverberation
Ther ever b. | sp library implements artificial reverberation.

(reverb snd time)
Artificial reverberation applied to snd with a decay time of time.

12.11. DTMF Encoding
The dt nf . | sp library implements DTMF encoding. DTMF is the ‘‘touch tone’ code used by
telephones.

(dtnf-tone key len space)
Generate a single DTMF tone. The key parameter is either a digit (a FI XNUMfrom O through 9)
or the atom STAR or POUND. The duration of the done is given by len (a FLONUM and the tone
isfollowed by silence of duration space (a FLONUM).

(speed-di al thelist)
Generates a sequence of DTMF tones using the keys in thelist (a LI ST of keys as described
above under dt nf -t one). The duration of each tone is 0.2 seconds, and the space between
tonesis 0.1 second. Use st r et ch to change the ‘“dialing’’ speed.

12.12. Dolby Surround(R), Stereo and Spatialization Effects

Thespati al . | sp library implements various functions for stereo manipulation and spatialization. It
also includes some functions for Dolby Pro-L ogic panning, which encodes left, right, center, and surround
channels into stereo. The stereo signal can then be played through a Dolby decoder to drive a surround
speaker array. This library has a somewhat simplified encoder, so you should certainly test the output.
Consider using a high-end encoder for critical work. There are a number of functionsinspati al . | sp
for testing. See the source code for comments about these.

(st ereoi zesnd)
Convert a mono sound, snd, to stereo. Four bands of equalization and some delay are used to
create a stereo effect.

Page 128 NYQUIST MANUAL

(w den snd amt)
Artificially widen the stereo field in snd, a two-channel sound. The amount of widening is ant,
which varies from 0 (snd is unchanged) to 1 (maximum widening). The amt can be a SOUND or a
number.

(spansnd amt)
Pan the virtual center channel of a stereo sound, snd, by amt, where 0 pans all the way to the | eft,
while 1 pans all the way to the right. The amt can be a SOUND or a number.

(swapchannel ssnd)
Swap left and right channelsin snd, a stereo sound.

(prologic | cr 9
Encode four monaural SOUNDs representing the front-left, front-center, front-right, and rear
channels, respectively. The return value is a stereo sound, which is a Dolby-encoded mix of the
four input sounds.

(pl-left snd)
Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the front left channel.

(pl -center snd)
Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the front center channel.

(pl-right snd)
Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the front right channel.

(pl -rear snd)
Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the rear, or surround,
channel.

(pl-pan2d snd x vy)

Comparable to Nyquist’s existing pan function, pl - pan2d provides not only left-to-right
panning, but front-to-back panning as well. The function accepts three parameters: snd is the
(monophonic) input SOUND, X is a left-to-right position, and y is a front-to-back position. Both
position parameters may be numbers or SOUNDs. An x value of 0 means left, and 1 means right.
Intermediate values map linearly between these extremes. Similarly, a 'y value of O causes the
sound to play entirely through the front speakers(s), while 1 causes it to play entirely through the
rear. Intermediate values map linearly. Note that, although there are usually two rear speakersin
Pro-Logic systems, they are both driven by the same signal. Therefore any sound that is panned
totally to the rear will be played over both rear speakers. For example, it is nhot possible to play a
sound exclusively through the rear |eft speaker.

(pl-position snd x y config)

The position function builds upon speaker panning to allow more abstract placement of sounds.
Like pl - pan2d, it accepts a (monaural) input sound as well as left-to-right (x) and front-to-back
(y) coordinates, which may be FLONUMs or SOUNDs. A fourth parameter config specifies the
distance from listeners to the speakers (in meters). Current settings assume this to be constant for
al speakers, but this assumption can be changed easily (see comments in the code for more
detail). There are several important differences between pl - posi ti on and pl - pan2d. First,
pl - posi ti on uses a Cartesian coordinate system that allows x and y coordinates outside of the
range (0, 1). This model assumes a listener position of (0,0). Each speaker has a predefined
position aswell. The input sound’ s position, relative to the listener, is given by the vector (x,y).

(pl -doppl er snd r)
Pitch-shift moving sounds according to the equation: fr = fO((c+vr)/c), where fr is the output
frequency, fO is the emitted (source) frequency, c is the speed of sound (assumed to be 344.31
m/s), and vr is the speed at which the emitter approaches the receiver. (vr isthe first derivative of
parameter r, the distance from the listener in meters.

NYQUIST LIBRARIES Page 129

12.13. Minimoog-inspired Synthesis

Thenoog. | sp library gives the Nyquist user easy accessto ‘‘classic’’ synthesizer sounds through an
emulation of the Minimoog Synthesizer. Unlike modular Moogs that were very large, the Minimoog was
the first successful and commonly used portable synthesizer. The trademark filter attack was unique and
easily recognizable. The goal of this Nyquist instrument is not only to provide the user with default
sounds, but also to give control over many of the ‘‘knobs’ found on the Minimoog. In this
implementation, these parameters are controlled using keywords. The input to the noog instrument is a
user-defined sequence of notes, durations, and articulations that simulate notes played on a keyboard.
These are translated into control voltages that drive multiple oscillators, similar to the Voltage Controlled
Oscillator or VCO found in the original analog Moog.

The basic functionality of the Minimoog has been implemented, including the often-used "glide". The
glide feature essentially low-pass filters the control voltage sequence in order to create sweeps between
notes. Figure 21 is a simplified schematic of the data flow in the Moog. The control lines have been
omitted.

Input

Noise ———>

| Oscillator 1 Misxer
_,,| Oscillator 2 H Detuning }—p
—>| Oscillator 3 |—>| Detuning |—>

Low Pass

Resonant Amplitude — Output
Filter Envelope

Figure 21: System diagram for Minimoog emulator.

The most recognizable feature of the Minimoog is its resonant filter, a Four-Pole Ladder Filter invented
by Robert Moog. It is simply implemented in a circuit with four transistors and provides an outstanding
24 dB/octave rolloff. It is modeled here using the built-in Nyquist resonant filter. One of the Moog filter
features is a constant Q, or center frequency to bandwidth ratio. This is implemented and the user can
control the Q.

The user can control many parameters using keywords. Their default values, acceptable ranges, and
descriptions are shown below. The defaults were obtained by experimenting with the official Minimoog
software synthesizer by Arturia.

Page 130 NYQUIST MANUAL

12.13.1. Oscillator Parameters
range-oscl (2)
range- osc2 (1)
range- osc3 (3)
These parameters control the octave of each oscillator. A value of 1 corresponds to the octave indicated
by the input note. A value of 3 istwo octaves above the fundamental. The allowablerangeis1to 7.

det un2 (-.035861)
det un3 (.0768)
Detuning of two oscillators adds depth to the sound. A value of 1 corresponds to an increase of a single
semitone and a -1 corresponds to a decrease in a semitone. Therangeis-1to 1.

shape-oscl (*saw-t abl e*)
shape-osc2 (*sawt abl e*)
shape- osc3 (*sawt abl e*)
Oscilators can use any wave shape. The default sawtooth waveform is a built-in Nyquist variable. Other
waveforms can be defined by the user.

vol unme- oscl (1)
vol ume- osc2 (1)
vol urme- osc3 (1)
These parameters control the relative volume of each oscillator. The range is any FLONUMGgreater than or
equal to zero.

12.13.2. Noise Parameters

noi sel evel (.05)
This parameter controls the relative volume of the noise source. The range is any FLONUMgreater than or
equal to zero.

12.13.3. Filter Parameters
filter-cutoff (768)
The cutoff frequency of thefilter in given in Hz. Therange is zero to 20,000 Hz.

Q(2)
Q istheratio of center frequency to bandwidth. It is held constant by making the bandwidth a function of
frequency. The range is any FLONUMgreater than zero.

cont our (.65)
Contour controls the range of the transient frequency sweep from a high to low cutoff frequency when a
note is played. The high frequency is proportional to contour. A contour of O removes this sweep. The
rangeisOto 1.

filter-attack (.0001)
Filter attack controls the attack time of the filter, i.e. the time to reach the high cutoff frequency. The
rangeis any FLONUMgreater than zero (seconds).

filter-decay (.5)

NYQUIST LIBRARIES Page 131

Filter decay controls the decay time of the filter, i.e. the time of the sweep from the high to low cutoff
frequency. Therange is any FLONUMgreater than zero (seconds).

filter-sustain(.8)
Filter sustain controls the percentage of the filter cutoff frequency that the filter settles on following the
sweep. TherangeisOto 1.

12.13.4. Amplitude Parameters

anp- attack (.01)
This parameter controls the amplitude envelope attack time, i.e. the time to reach maximum amplitude.
Therangeis any FLONUMgreater than zero (seconds).

anp- decay (1)
This parameter controls the amplitude envelope decay time, i.e. the time between the maximum and
sustain volumes. The range is any FLONUMgreater than zero (seconds).

anp-sustain (1)
This parameter controls the amplitude envelope sustain volume, a fraction of the maximum. The rangeis
Oto 1.

anp-rel ease (0)
This parameter controls the amplitude envelope release time, i.e. the time it takes between the sustain
volume and 0 once the note ends. The duration controls the overall length of the sound. The range of
anp-r el ease isany FLONUMgreater than zero (seconds).

12.13.5. Other Parameters

gl i de (0
Glide controls the low-pass filter on the control voltages. This models the glide knob on a Minimoog. A
higher value corresponds to a lower cutoff frequency and hence a longer "glide" between notes. A value
of O correspondsto no glide. Therange is zero to 10.

12.13.6. Input Format
A single note or a series of notes can be input to the Moog instrument by defining a list with the
following format:

(list (list frequency duration articulation) ...)

where frequency is a FLONUMIn steps, duration is the duration of each note in seconds (regardless of the
release time of the amplifier), and articulation is a percentage of the duration that a sound will be played,
representing the amount of time that a key is pressed. The filter and amplitude envelopes are only
triggered if anote is played when the articulation of the previous note is less than 1, or akey is not down
a the same time. This Moog instrument is a monophonic instrument, so only one note can sound at a
time. The release section of the amplifier is triggered when the articulation is less than 1 at the time
(duration * articulation).

Page 132 NYQUIST MANUAL

12.13.7. Sample Code/Sounds
Sound 1 (default parameters):
(setf s "((24 .5 .99)(26 .5 .99)(28 .5 .99)(29 .5 .99)(31 2 1)))
(play (noog s))

Sound 2 (articulation, with amplitude release):

(setf s "((24 .5 .5)(26 .5 1)(28 .5 .25)(29 .5 1)(31 1 .8)))
(play (moog s :anp-release .2))

Sound 3 (glide):
(setf s "((24 .5 .5)(38 .5 1)(40 .5 .25)
(53 .5 1)(55 2 1)(31 2 .8)(36 2 .8)))
(play (moog s :anp-release .2 :glide .5))

Sound 4 (keyword parameters): Filter attack and decay are purposely longer than notes being played
with articulation equal to 1.
(setf s "((20 .5 1)(27 .5 1)(26 .5 1)(21 .5 1)
(20 .5 1)(27 .5 1)(26 .5 1)(21 .5 1)))
(play (moog s :shape-oscl *tri-tabl e* :shape-osc2 *tri-table*
cfilter-attack 2 :filter-decay 2
cfilter-cutoff 300 :contour .8 :glide .2 :Q 8))

Sound 5: This example illustrates the ability to completely define a new synthesizer with different
parameters creating a drastically different sound. Sine waves are used for wavetables. There is a high
valuefor glide.

(defun ny-noog (freq) (nmoog freq
:range-oscl 3 range 0sc2 2 :range-osc3 4
:detun2 - 043155 : detun3 015016
:noiselevel 0
cfilter-cutoff 400 :Q .1 :contour .0000001
cfilter-attack O :filter-decay .01 :filter-sustain 1
: shape-oscl *sine-tabl e* :shape-osc2 *sine-table*
: shape-osc3 *sine-tabl e* :volune-oscl 1 :volune-osc2 1
:volunme-o0sc3 .1 :anmp-attack .1 :anp-decay O
canp-sustain 1 :anp-release .3 :glide 2))

(setf s *((80 .4 .75)(28 .2 1)(70 .5 1)(38 1 .5)))
(play (ny-mpog s))

Sound 6: This example has another variation on the default parameters.
(setf s "((24 .5 .99)(26 .5 .99)(28 .5 .99)(29 .5 .99)(31 2 1)))
(play (moog s :shape-oscl *tri-table* :shape-osc2 *tri-tabl e*
:filter-attack .5 :contour .5))

EXTENDING NYQUIST Page 133

Appendix |
Extending Nyquist
WARNING: Nyquist sound functions look almost like a human wrote them; they even have a fair
number of comments for human readers. Don't be fooled: virtualy al Nyquist functions are written by a
special trandlator. If you try to write a new function by hand, you will probably not succeed, and even if
you do, you will waste a great deal of time. (End of Warning.)

[.1. Trandating Descriptionsto C Code

The trandlator code used to extend Nyquist resides in the t r nsr ¢ directory. This directory aso
containsaspecia i ni t. | sp, soif you start XLisp or Nyquist in this directory, it will automatically read
i nit.lsp,whichinturnwill load the trandator code (which residesin severa files).

Also in the t rnsr ¢ directory are a number of . al g files, which contain the source code for the
tranglator (more on these will follow), and a number of corresponding . h and . c files.

Totrandatea . al g fileto. ¢ and . h files, you start XLisp or Nyquist in thet r nsr ¢ directory and
type
(transl ate "prod")

where " pr od" should really be replaced by the filename (without a suffix) you want to trandate. Be
sure you have a saved, working copy of Nyquist or Xlisp before you recompile!

Note: On the Macintosh, just run Nyquist out of the r unt i me directory and then use the Load menu
commandtoloadi ni t.| sp fromthet r nsr c directory. Thiswill load the translation code and change
Nyquist’s current directory tot r nsr ¢ so that commandslike(transl ate " prod") will work.

[.2. Rebuilding Nyquist

After generating pr od. ¢ and pr od. h, you need to recompile Nyquist. For Unix systems, you will
want to generate anew Makefile. Modify t ransfil es. | sp inyour main Nyquist directory, run Xlisp
or Nyquist and load makefil e. | sp. Follow the instructions to set your machine type, etc., and
execute (makesrc) and (makefile).

|.3. Accessing the New Function

The new Lisp function will generally be named with asnd- prefix, e.g. snd- pr od. You can test this
by running Nyquist. Debugging is usually a combination of calling the code from within the interpreter,
reading the generated code when things go wrong, and using a C debugger to step through the inner loop
of the generated code. An approach | like isto set the default sample rate to 10 hertz. Then, a one-second
sound has only 10 samples, which are easy to print and study on atext console.

For some functions, you must write some Lisp code to impose ordinary Nyquist behaviors such as
stretching and time shifting. A good approach is to find some structurally similar functions and see how
they areimplemented. Most of the Lisp code for Nyquist isinnyqui st . | sp.

Finally, do not forget to write up some documentation. Also, contributions are welcome. Send your
. al g file, documentation, Lisp support functions for nyqui st . | sp, and examples or test programs to
rbd@s. cnu. edu. | will either put them in the next release or make them available at a public ftp site.

Page 134 NYQUIST MANUAL

|.4. Why Trandation?

Many of the Nyquist signal processing operations are similar in form, but they differ in details. This
code is complicated by many factors: Nyquist uses lazy evaluation, so the operator must check to see that
input samples are available before trying to access them. Nyquist signals can have different sample rates,
different block sizes, different block boundaries, and different start times, all of which must be taken into
account. The number of software tests is enormous. (This may sound like a lot of overhead, but the
overhead is amortized over many iterations of the inner loop. Of course setting up the inner loop to run
efficiently is one more programming task.)

The main idea behind the trandation is that all of the checks and setup code are similar and relatively
easy to generate automatically. Programmers often use macros for this sort of task, but the C macro
processor is too limited for the complex trandation required here. To tell the translator how to generate
code, you write . al g files, which provide many details about the operation in a declarative style. For
example, the code generator can make some optimizations if you declare that two input signals are
commutative (they can be exchanged with one another). The main part of the. al g fileis the inner loop
which isthe heart of the signal processing code.

[.5. Writing a .alg File
To give you some idea how functions are specified, here is the specification for snd- pr od, which
generates over 250 lines of C code:
(PROD- ALG
(NAVE " prod")
(ARGUMENTS ("sound_type" "sl1") ("sound_type" "s2"))
(START (MAX sl s2))
(COMMUTATI VE (sl s2))
(I NNER- LOOP "out put = sl1 * s2")
(LI NEAR s1 s2)
(TERM NATE (M N s1 s2))
(LOG CAL- STOP (M N s1 s2))

)
A . al g fileisalways of the form:

(name
(attribute value)
(attribute value)

)

There should be just one of these algorithms descriptions per file. The name field is arbitrary: itisaLisp
symbol whose property list is used to save the following attribute/value pairs. There are many attributes
described below. For more examples, seethe. al g filesinthet r nsr ¢ directory.

Understanding what the attributes do is not easy, so here are three recommendations for implementors.
First, if there is an existing Nyquist operator that is structurally similar to something you want to
implement, make a copy of the corresponding . al g file and work from there. In some cases, you can
merely rename the parameters and substitute a new inner loop. Second, read the generated code,
especialy the generated inner loop. 1t may not all make sense, but sometimes you can spot obvious errors
and work your way back to the error in the . al g file. Third, if you know where something bad is
generated, see if you can find where the code is generated. (The code generator files are listed in
init.lsp.) This code is poorly written and poorly documented, but in some cases it is fairly

EXTENDING NY QUIST Page 135

straightforward to determine what attribute in the . al g fileis responsible for the erroneous output.

|.6. Attributes
Here are the attributes used for code generation. Attributes and values may be specified in any order.

(NAME " string") specifies a base name for many identifiers. In particular, the generated filenames will
be string. ¢ and string. h, and the XLisp function generated will be snd- string.

(ARGUMENTS arglist)
describes the arguments to be passed from XLisp. Arglist has the form: (typel
namel) (type2 name2) ..., where type and name are strings in double quotes,
e.g. ("sound_type" "s") specifies a SOUND parameter named s. Note that arglist is
not surrounded by parentheses. As seen in this example, the type names and
parameter names are C identifiers. Since the parameters are passed in from XLisp,
they must be chosen from a restricted set. Valid type names are: " sound_t ype",

"rate_type","double","long","string",and" LVAL".

(STATE statelist) describes additional state (variables) needed to perform the computation. A statelist
is similar to an arglist (see ARGUVENTS above), and has the form: (typel namel
initl [TEMP]) (type2 name2 init2 [TEMP]) The types and names are
as in arglist, and the "inits' are double-quoted initial values. Initial values may be
any C expression. State is initiaized in the order implied by statelist when the
operation is first called from XLisp. If TEMP is omitted the state is preserved in a
structure until the sound computation completes. Otherwise, the state variable only
exists at state initialization time.

(I NNER- LOCP innerloop-code)

describes the inner loop, written as C code. The innerloop-code is in double quotes,
and may extend over multiple lines. To make generated code extra-beautiful, prefix
each line of innerloop-code with 12 spaces. Temporary variables should not be
declared at the beginning of innerloop-code. Use the | NNER- LOOP- LOCALS
attribute instead. Within innerloop-code, each ARGUMENT of type sound_type must
be referenced exactly one time. If you need to use a signal value twice, assign it once
to atemporary and use the temporary twice. The inner loop must also assign onetime
to the psuedo-variable output. The model here is that the name of a sound argument
denotes the value of the corresponding signal at the current output sample time. The
inner loop code will be called once for each output sample. In practice, the code
generator will substitute some expression for each signal name. For example,
prod. al g specifies

(I NNER- LOCOP "out put = sl * s2")
(s1 and s2 are ARGUMENTS.) This expands to the following inner loop in pr od. c:
*out _ptr_reg++ = *sl ptr_reg++ * *s2 ptr_reg++;

In cases where arguments have different sample rates, sample interpolation is in-
lined, and the expressions can get very complex. The trandlator is currently very
simple-minded about substituting access code in the place of parameter names, and
thisis a frequent source of bugs. Simple string substitution is performed, so you must
not use a parameter or state name that is a substring of another. For example, if two
sound parameters were named s and s2, the translator might substitute for ‘s’ in
two places rather than one. If this problem occurs, you will almost certainly get aC
compiler syntax error. Thefix isto use ‘‘more unique’’ parameter and state variable
names.

(I NNER- LOOP- LOCALS " innerloop-code")
The innerloop-code contains C declarations of local variables set and referenced in

Page 136 NYQUIST MANUAL

the inner loop.

(SAVPLE- RATE " expr")
specifies the output sample rate; expr can be any C expression, including a parameter
from the ARGUMENTS list. You can also write (SAMPLE- RATE (MAX namel
name2 ...)) where names are unquoted names of arguments.

(SUPPCORT- HEADER " c-code")
specifies arbitrary C code to be inserted in the generated . h file. The code typicaly
contains auxiliarly function declarations and definitions of constants.

(SUPPORT- FUNCTI ONS " c-code")
specifies arbitrary C code to be inserted in the generated . ¢ file. The code typicaly
contains auxiliarly functions and definitions of constants.

(FI NALI ZATI ON " c-code")
specifies code to execute when the sound has been fully computed and the state
variables are about to be decallocated. Thisis the place to deallocate buffer memory,
etc.

(CONSTANT " namel" "name2' ...)
specifies state variables that do not change value in the inner loop. The values of
state variables are loaded into registers before entering the inner loop so that access
will be fast within the loop. On exiting the inner loop, the final register values are
preserved in a ‘‘suspension’”’ structure. If state values do not change in the inner
loop, this CONSTANT declaration can eliminate the overhead of storing these
registers.

(START spec) specifies when the output sound should start (a sound is zero and no processing is
done before the start time). The spec can take several forms: (M N namel name2
...) means the start time is the minimum of the start times of input signals namel,
name2, Note that these names are not quoted.

(TERM NATE spec)

specifies when the output sound terminates (a sound is zero after this termination time
and no more samples are computed). The spec can take several forms: (M N namel
name2 ...) means the terminate time is the minimum of the terminate times of
input arguments namel, name2, Note that these names are not quoted. To
terminate at the time of asingle argument s1, specify (M N s1) . To terminate after
a specific duration, use (AFTER "c-expr"), where c-expr is a C variable or
expression. To terminate at a particular time, use (AT " c-expr") . spec may aso be
COMPUTED, which means to use the maximum sample rate of any input signal.

(LOG CAL- STOP spec)
specifies the logica stop time of the output sound. This spec is just like the one for
TERM NATE. If no LOd CAL- STOP attribute is present, the logical stop will
coincide with the terminate time.

(ALWAYS- SCALE namel name2 ...)

says that the named sound arguments (not in quotes) should always be multiplied by a
scale factor. Thisis a space-time tradeoff. When Nyquist sounds are scaled, the scale
factor is merely stored in astructure. It isthe responsibility of the user of the samples
to actually scale them (unless the scale factor is exactly 1.0). The default is to
generate code with and without scaling and to select the appropriate code at run time.
If there are N signal inputs, this will generate 2N versions of the code. To avoid this
code explosion, use the ALWAYS- SCALE attribute.

(1 NLI NE- | NTERPOLATI ON T)
specifies that sample rate interpolation should be performed in-line in the inner loop.
There are two forms of sample rate interpolation. One is intended for use when the

EXTENDING NY QUIST Page 137

rate change is large and many points will be interpolated. This form uses a divide
instruction and some setup at the low sample rate, but the inner loop overhead is just
an add. The other form, intended for less drastic sample rate changes, performs
interpolation with 2 multiplies and several adds per sample at the high sample rate.
Nyquist generates various inner loops and selects the appropriate one at run-time. If
I NLI NE- | NTERPOLATI ON is not set, then much less code is generated and
interpolation is performed as necessary by instantiating a separate signal processing
operation.

(STEP- FUNCTI ON namel name2 ...)
Normally all argument signals are linearly interpolated to the output sample rate. The
linear interpolation can be turned off with this attribute. Thisis used, for example, in
Nyquist variable filters so that filter coefficients are computed at low samplerates. In
fact, this attribute was added for the special case of filters.

(DEPENDS specl spec2 ...)

Specifies dependencies. This attribute was also introduced to handle the case of filter
coefficients (but may have other applications) Use it when a state variable is a
function of a potentially low-sample-rate input where the input is in the
STEP- FUNCTI ON list. Consider a filter coefficient that depends upon an input
signal such as bandwidth. In this case, you want to compute the filter coefficient only
when the input signal changes rather than every output sample, since output may
occur at amuch higher samplerate. A spec is of the form

" "arg expr' [TEMP "type'])

(" name"
which is interpreted as follows. name depends upon arg; when arg changes,
recompute expr and assign it to name. The name must be declared as a STATE
variable unless TEMP is present, in which case name is not preserved and is used only
to compute other state. Variables are updated in the order of the DEPENDS list.

(FORCE- | NTO REQ STER namel name2 . ..)
causes namel, name2, ... to be loaded into registers before entering the inner loop. If
the inner loop references a state variable or argument, this happens automaticaly. Use
this attribute only if references are **hidden’” in a#def i ne’d macro or referenced in
a DEPENDS specification.

(NOT- REG STER namel name2 .. .)
specifies state and arguments that should not be loaded into registers before entering
aninner loop. Thisis sometimes an optimization for infrequently accessed state.

(NOT- I N- I NNER- LOOP " namel" "name2" ...)
says that certain arguments are not used in the inner loop. Nyquist assumes all
arguments are used in the inner loop, so specify them hereif not. For example, tables
are passed into functions as sounds, but these sounds are not read sample-by-sample
in the inner loop, so they should be listed here.

(MAI NTAIN ("namel" "exprl") ("name2' "expr2') ...)

Sometimes the IBM XLC compiler generates better loop code if a variable referenced
in the loop is not referenced outside of the loop after the loop exit. Technically,
optimization is better when variables are dead upon loop exit. Sometimes, there is an
efficient way to compute the final value of a state variable without actualy
referencing it, in which case the variable and the computation method are given as a
pair in the MAI NTAI N attribute. This suppresses a store of the value of the named
variable, making it a dead variable. Where the store would have been, the expression
is computed and assigned to the named variable. See partial .al g for an
example. Thisoptimization is never necessary and is only for fine-tuning.

(LI NEAR namel name2 ...)

Page 138

NYQUIST MANUAL

specifies that named arguments (without quotes) are linear with respect to the output.
Wheat this really means is that it is numerically OK to eliminate a scale factor from
the named argument and store it in the output sound descriptor, avoiding a potential
multiply in this inner loop. For example, both arguments to snd- pr od (signa
multiplication) are *‘linear.”” The inner loop has a single multiplication operator to
multiply samples vs. a potential 3 multiplies if each sample were also scaled. To
handle scale factors on the input signals, the scale factors are automatically multiplied
and the product becomes the scale factor of the resulting output. (This effectively
‘‘passes the buck’’ to some other, or perhaps more than one, signal processing
function, which is not always optimal. On the other hand, it works great if you
multiply a number of scaled signals together: all the scale factors are ultimately
handled with asingle multiply.)

(1 NTERNAL- SCALI NG namel name2 .. .)

indicates that scaling is handled in code that is hidden from the code generator for
namel, name2, ..., which are sound arguments. Although it is the responsibility of the
reader of samples to apply any given scale factor, sometimes scaling can be had for
free. For example, the snd-r eci p operation computes the reciproca of the input
samples by peforming a division. The simple approach would be to specify an inner
loop of output = 1.0/s1, where sl is the input. With scaling, this would
generate an inner loop something like this:

*output++ = 1.0 / (sl_scale_factor * *sl++);
but a much better approach would be the following:
*output++ = ny_scale factor / *sl++

where ny_scal e_factor is initidized to 1.0 / sl1->scale. Waorking
backward from the desired inner loop to the . al g inner loop specification, a first
attempt might be to specify:

(I NNER- LOCOP "out put = ny_scale_factor / s1")
but thiswill generate the following:
*out put ++=my_scal e_factor/(sl_scal e_factor * *sl++);

Since the code generator does not know that scaling is handled elsewhere, the scaling
is done twice! The solution is to put s1 in the | NTERNAL- SCALI NG list, which
essentially means ‘‘ I’ ve aready incorporated scaling into the algorithm, so suppress
the multiplication by a scale factor.”’

(COWUTATI VE (namel name2 ...))

specifies that the results will not be affected by interchanging any of the listed
arguments. When arguments are commutative, Nyquist rearranges them at run-time
into decreasing order of sample rates. If interpolation isin-line, this can dramatically
reduce the amount of code generated to handle all the different cases. The prime
exampleisprod. al g.

(TYPE- CHECK " code")

specifies checking code to be inserted after argument type checking at initialization
time. See downpr ot 0. al g for an example where a check is made to guarantee that
the output sample rate is not greater than the input sample rate. Otherwise an error is
raised.

EXTENDING NYQUIST Page 139

|.7. Generated Names

The resulting . ¢ file defines a number of procedures. The procedures that do actual sample
computation are named something like name_inter p-spec_FETCH, where name is the NAME attribute from
the . al g file, and interp-spec is an interpolation specification composed of a string of the following
letters: n, s, i, and r. One letter corresponds to each sound argument, indicating no interpolation (r),
scaling only (s), ordinary linear interpolation with scaling (i), and ramp (incremental) interpolation with
scaling (r). The code generator determines all the combinations of n, s, i, and r that are necessary and
generates a separate fetch function for each.

Another function isname_t oss_f et ch, which is called when sounds are not time-aligned and some
initial samples must be discarded from one or more inputs.

The function that creates asound issnd_nake_name. Thisiswhere state allocation and initialization
takes place. The proper fetch function is selected based on the sample rates and scal e factors of the sound
arguments, and asound_t ype isreturned.

Since Nyquist is a functional language, sound operations are not normally allowed to modify their
arguments through side effects, but even reading samples from a sound_t ype causes side effects. To
hide these from the Nyquist programmer, sound_t ype arguments are first copied (this only copies a
small structure. The samples themselves are on a shared list). The function snd_name performs the
necessary copies and callssnd_nake_name. Itisthe snd_name function that is called by XLisp. The
XLisp name for the function is SND- NAME. Notice that the underscore in C is converted to a dash in
XLisp. Also, XLisp converts identifiers to upper case when they are read, so normally, you would type
snd-name to call the function.

|.8. Scalar Arguments

If you want the option of passing either a number (scalar) or asignal as one of the arguments, you have
two choices, neither of which is automated. Choice 1 is to coerce the constant into a signal from within
XLisp. The naming convention would be to DEFUN a new function named NAME or S- NAME for
ordinary use. The NAME function tests the arguments using XLisp functions such as TYPE- CF,
NUMBERP, and SOUNDP. Any number is converted to a SOUND, e.g. using CONST. Then SND- NAME
is called with al sound arguments. The disadvantage of this scheme is that scalars are expanded into a
sample stream, which is slower than having a special inner loop where the scalar is simply kept in a
register, avoiding loads, stores, and addressing overhead.

Choice 2 is to generate a different sound operator for each case. The naming convention here is to
append a string of ¢'s and Vv's, indicating constant (scalar) or variable (signal) inputs. For example, the
reson operator comes in four variations. reson, resoncv, resonvc, and resonvv. The
resonvc version implements a resonating filter with a variable center frequency (a sound type) and a
constant bandwidth (a FLONUM). The RESON function in Nyquist is an ordinary Lisp function that
checks types and calls one of SND- RESON, SND- RESONCV, SND- RESONVC, or SND- RESONWV.

Since each of these SND- functions performs further selection of implementation based on sample rates
and the need for scaling, there are 25 different functions for computing RESON! So far, however,
Nyquist is smaller than Common Lisp and it's about half the size of Microsoft Word. Hopefully,
exponential growth in memory density will outpace linear (as a function of programming effort) growth
of Nyquist.

Page 140 NYQUIST MANUAL

OPEN SOUND CONTROL AND NYQUIST Page 141

Adpgendix [_
Open Sound Control and Nyquist

Open Sound Control (OSC) is a simple protocol for communicating music control parameters between
software applications and across networks. For more information, see
http://ww. cnimat . ber kel ey. edu/ OQpenSoundCont r ol /. The Nyquist implementation of
Open Sound Control is simple: an array of floats can be set by OSC messages and read by Nyquist
functions. That is about all thereistoit.

Note: Open Sound Control must be enabled by caling (osc-enabl e t). If this fals under
Windows, see the installation instructions regarding Sy st enRoot .

To control something in (near) real-time, you need to access a dider value as if it a signal, or more
properly, a Nyquist SOUND type. The function snd- sl i der, described in Section 5.6.1, takes a dlider
number and returns a SOUND type representing the current value of the dlider. To fully understand this
function, you need to know something about how Nyquist is actually computing sounds.

Sounds are normally computed on demand. So the result returned by snd-sli der does not
immediately compute any samples. Samples are only computed when something tries to use this signal.
At that time, the dlider value is read. Normally, if the slider is used to control a sound, you will hear
changes in the sound pretty soon after the dider value changes. However, one thing that can interfere with
thisisthat SOUND samples are computed in blocks of about 1000 samples. When the slider value isread,
the same value is used to fill a block of 1000 samples, so even if the sample rate is 44,100 Hz, the
effective slider sample rate is 44,100/1000, or 44.1 Hz. If you give the dlider a very low sample rate, say
1000, then dlider value changes will only be noticed by Nyquist approximately once per second. For this
reason, you should normally use the audio sample rate (typically 44,100 Hz) for the rate of the
snd- sl i der output SOUND. (Yes, this is terribly wasteful to represent each slider value with 1000
samples, but Nyquist was not designed for low-latency computation, and this is an expedient work-
around.)

In addition to reading sliders as continually changing SOUNDs, you can get the slider value as a Lisp
FLONUM (afloating point number) using get - sl i der - val ue, described in Section 5.6.1. This might
be useful if you are computing a sequence of many notes (or other sound events) and want to apply the
current slider value to the whole note or sound event.

Note that if you store the value returned by snd- sl i der in avariable, you will capture the history of
the slider changes. Thiswill take alot of memory, so be careful.

Suppose you write a simple expression such as (hzosc (rmult 1000 (snd-slider O
...))) tocontrol an oscillator frequency with a dider. How long does this sound last? The duration of
hzosc is the duration of the frequency control, so what is the duration of a dider? To avoid infinitely
long signals, you must specify a duration as one of the parameters of snd- sl i der .

You might be thinking, what if | just want to tell the slider when to stop? At present, you cannot do
that, but in the future there should be a function that stops when its input goes to zero. Then, moving a
dider to zero could end the signal (and if you multiplied a complex sound by one of these ending
functions, everything in the sound would end and be garbage collected).

Another thing you might want to do with interactive control is start some sound. The tri gger

Page 142 NYQUIST MANUAL

function computes an instance of a behavior each time an input SOUND goes from zero to greater-than-
zero. This could be used, for example, to create a sequence of notes.

Thesnd- sl i der function has some parameters that may be unfamiliar. The second parameter, t0, is
the starting time of the sound. This should normally be (| ocal -t o- gl obal 0), an expression that
computes the instantiation time of the current expression. This will often be zero, but if you call
snd- sl i der frominsideaseq or seq- r ep, the starting time may not be zero.

The srate parameter is the sample rate to return. This should normally be the audio sample rate you are
working with, whichistypically * def aul t - sound- sr at e*.

[1.1. Sending Open Sound Control Messages
A variety of programs support OSC. The only OSC message interpreted by Nyquist has an address of
/ sl i der, and two parameters. an integer slider number and afloat value, nominally from 0.0 to 1.0.

Two small programs are included in the Nyquist distribution for sending OSC messages. (Both can be
found in the same directory as the nyquist executable.) The first one, osc-test-client sends a
sequence of messages that just cause slider 0 to ramp slowly up and down. If you run this on a command
line, you can use "?' or "h" to get help information. There is an interactive mode that lets you send each
OSC message by typing RETURN.

[1.2. The ser-to-osc Program
The second programisser - t 0- 0sc, aprogram that reads serial input (for example from a PIC-based
microcontroller) and sends OSC messages. Run this command-line program from a shell (a termina
window under OS X or Linux; use the CMD program under Windows). You must name the serial input
device on the command line, e.g. under OS X, you might run:
./ser-to-osc /dev/tty. usbserial-0000103D

(Note that the program name is preceded by ‘‘./". This tells the shell exactly where to find the
executable program in case the current directory is not on the search path for executable programs.)
Under Windows, you might run:

ser-to-osc comd

(Note that youdo not type ‘. /' in front of awindows program.)

To use ser -t 0- osc, you will have to find the serial device. On the Macintosh and Linux, try the
following:

| s /dev/ *usb*

This will list all serial devices with ‘‘usb’’ in their names. Probably, one will be a name similar to
/dev/tty. usbserial -0000103D. The ser-t o- osc program will echo data that it receives, so
you should know if things are working correctly.

Under Windows, open Control Panel from the Start menu, and open the System control panel. Select
the Hardware tab and click the Device Manager button. Look in the device list under Ports (COM &
LPT). When you plug in your serial or USB device, you should see anew entry appear, e.g. COMA. Thisis
the device name you need.

The format for the serial input is: any non-whitespace character(s), a lider number, a slider value, and

OPEN SOUND CONTROL AND NYQUIST Page 143

a newline (control-j or ASCII 0x0A). These fields need to be separated by tabs or spaces. An optional
carriage return (control-m or ASCII 0xOD) preceding the ASCII OxO0A is ignored. The dslider number
should be in decimal, and theh dlider value is a decimal number from 0 to 255. Thisis scaled to the range
0.0t0 1.0 (so an input of 255 trandatesto 1.0).

There is a simple test program in denps/ osc-t est. | sp you can run to try out control with Open
Sound Control. There are two examples in that file. One uses snd- sl i der to control the frequency of
an oscillator. The other uses get - sl i der - val ue to control the pitch of grainsin a granular synthesis
process.

Page 144 NY QUIST MANUAL

INTGEN Page 145

Appendix |1
I ntgen
This documentation describes Intgen, a program for generating XLISP to C interfaces. Intgen works by
scanning . h files with special comments in them. Intgen builds stubs that implement XLISP SUBR’s.
When the SUBR is called, arguments are type-checked and passed to the C routine declared in the . h file.
Results are converted into the appropriate XL ISP type and returned to the calling XLISP function. Intgen
lets you add C functions into the XLI1SP environment with very little effort.

The interface generator will take as command-line input:

» the name of the . ¢ file to generate (do not include the . ¢ extension; e.g. write x| ext en,
not x| ext en. c);

e alistof . hfiles.
Alternatively, the command line may specify a command file from which to read file names. The
command file name should be preceded by "@", for example:
i ntgen @ndf ns. cl
reads sndfns.cl to get the command-line input. Only one level of indirection is allowed.

Theoutput is:
* asingle. c filewith one SUBR defined for each designated routinein a. h file.

« a. h filethat declares each new C routine. E.g. if the. ¢ fileisnamed x| ext en. c, thisfile
will be named x| ext endef s. h;

e a . h file that extends the SUBR table used by Xlisp. E.g. if the . ¢ file is named
x| ext en. c, then thisfileisnamed x| ext enptrs. h;

* a. | sp file with lisp initialization expressions copied from the . h files. This file is only
generated if at least one initialization expression is encountered.

For example, the command line
i ntgen seint ~setypes.h access.h
generatesthefile sei nt . ¢, using declarationsin set ypes. h and access. h. Normally, the. h files
are included by the generated file using #i ncl ude commands. A ~ before a file means do not include
the . h file. (This may be useful if you extend x| i sp. h, which will be included anyway). Also
generated will beset i nt defs. handsei ntptrs. h.

111.0.1. Extending Xlisp

Any number of . h files may be named on the command line to Intgen, and Intgen will make a single
. ¢ file with interface routines for al of the . h files. On the other hand, it is not necessary to put all of
the extensions to Xlisp into a single interface file. For example, you can run Intgen once to build
interfaces to window manager routines, and again to build interfaces to a new data type. Both interfaces
can be linked into Xlisp.

To use the generated files, you must compile the . ¢ files and link them with all of the standard Xlisp
object files. In addition, you must edit the file | ocal def s. h to contain an #i ncl ude for each
*def s. h file, and edit the file | ocal pt rs. h to include each * pt r s. h file. For example, suppose
you run Intgen to build soundi nt. c, fugueint.c, and tableint.c. You would then edit
| ocal def s. h to contain the following:

Page 146 NYQUIST MANUAL

#i ncl ude "soundi nt defs. h"
#i ncl ude "fuguei ntdefs.h
#i nclude "tabl eintdefs.h

and edit| ocal pt rs. h tocontan:

#i ncl ude "soundintptrs. h"
#i ncl ude "fugueintptrs. h"
#i nclude "tableintptrs. h"

These | ocal defs. h and | ocal ptrs. h files are in turn included by x| ft ab. ¢ which is where
Xlisp builds atable of SUBRs.

To summarize, building an interface requires just afew simple steps:

 Write C code to be called by Xlisp interface routines. This C code does the real work, and in
most cases is completely independent of Xlisp.

» Add commentsto . h filesto tell Intgen which routines to build interfaces to, and to specify
the types of the arguments.

* Run Intgen to build interface routines.
e Editl ocal ptrs. handl ocal def s. h toinclude generated . h files.
e Compile and link Xlisp, including the new C code.

[11.1. Header file format
Each routine to be interfaced with Xlisp must be declared as follows:
type-name routine-name(); /* LI SP: (func-name type, type, ...) */

The comment may be on the line following the declaration, but the declaration and the comment must
each be on no more than oneline. The characters LI SP: at the beginning of the comment mark routines
to put in the interface. The comment also gives the type and number of arguments. The function, when
accessed from lisp will be known as func-name, which need not bear any relationship to routine-name.
By convention, underscores in the C routine-name should be converted to dashes in func-name, and
func-name should be in all capitals. None of thisis enforced or automated though.

Legal type_names are:
LVAL returns an Xlisp datum.
atom type equivalent to LVAL, but the result is expected to be an atom.
val ue_type avalue as used in Dannenberg’ s score editor.
event _type an event as used in Dannenberg’ s score editor.
i nt interface will convert int to Xlisp FI XNUM
bool ean interface will convertintto Tornil .
f | oat or doubl einterface convertsto FLONUM

char *orstringorstring type
interface convertsto STRI NG. The result string will be copied into the XLISP heap.
void interface will returnni | .
It is easy to extend this list. Any unrecognized type will be coerced to ani nt and then returned as a
FI XNUM and awarning will be issued.

INTGEN Page 147

The‘** " after char must be followed by routine-name with no intervening space.

Parameter types may be any of the following:

FI XNUM C routine expects an int.

FLONUMor FLOATC routine expectsadoubl e.

STRI NG Croutine expectschar *, the string is not copied.

VALUE Croutine expectsaval ue_t ype. (Not applicable to Fugue.)
EVENT Croutine expectsan event _t ype. (Not applicable to Fugue.)
ANY C routine expects LVAL.

ATOM C routine expects LVAL whichisalisp atom.

FI LE C routine expectsFI LE *.

SOUND C routine expectsa SoundPt r .

Any of these may be followed by ““*'": FI XNUMr, FLONUM*, STRI NG*, ANY*, FI LE*, indicating C
routine expectsi nt *,doubl e *,char ** LVAL *,orFILE ** . Thisisbasicaly a mechanism
for returning more than one value, not a mechanism for clobbering XLisp values. In this spirit, the
interface copiesthevalue (ani nt , doubl e, char *,LVAL,or FI LE *)toalocal variable and passes
the address of that variable to the C routine. On return, alist of resulting *‘*’’ parameters is constructed
and bound to the global XLisp symbol * RSLT*. (Strings are copied.) If the C routine is void, then the
result list is also returned by the corresponding XLisp function.

Note 1: this does not support C routines like strcpy that modify strings, because the C routine gets a
pointer to the string in the XLisp heap. However, you can aways add an intermediate routine that
allocates space and then calls st r cpy, or whatever.

Note 2: it follows that a new XLisp STRI NGwill be created for each STRI NG* parameter.

Note 3: putting results on a (global!) symbol seems a bit unstructured, but note that one could write a
multiple-value binding macro that hides this ugliness from the user if desired. In practice, | find that
pulling the extraresult values from * RSLT* when needed is perfectly acceptable.

For parameters that are result values only, the character ‘A"’ may be substituted for “** ", In this case,
the parameter is not to be passed in the XLisp calling site. However, the address of an initialized local
variable of the given type is passed to the corresponding C function, and the resulting value is passed
back through * RSLT* as ordinary result parameter as described above. The local variables areinitialized
tozeroor NULL.

[11.2. Using #define'd macros

If acomment of the form:
/* LI SP: type-name (routine-name-2 type-1 type-2 ...) */

appears on aline by itself and there was a#def i ne on the previous line, then the preceding #def i ne
istreated as a C routine, e.g.

#define leftshift(val, count) ((val) << (count))
/[* LISP: int (LOGSH FT I NT INT) */

will implement the LeLisp function LOGSHI FT.

Page 148 NYQUIST MANUAL

The type-name following ‘‘LI SP: *’ should have no spaces, e.g. use ANY* , not ANY *.

[11.3. Lisp Include Files
Include files often define constants that we would like to have around in the Lisp world, but which are
easier to initialize just by loading atext file. Therefore, acomment of the form:

/[* LISP-SRC. (any |isp expression) */
will cause Intgen to open afile name. | sp and append
(any lisp expression)
to name. | sp, where name is the interface name passed on the command line. If none of the include files

examined have comments of this form, then no name. | sp file is generated. Note: the LISP-SRC
comment must be on a new line.

[11.4. Example

This file was used for testing Intgen. It uses a trick (ok, it's a hack) to interface to a standard library
macro (tolower). Since tolower is already defined, the macro ToLower is defined just to give Intgen a
nameto call. Two other routines, strlen and tough, are interfaced as well.

/* igtest.h -- test interface for intgen */

#define ToLower(c) tol ower(c)
/* LISP: int (TOLOAER FI XNUM) */

int strien(); /* LISP: (STRLEN STRING */

voi d tough();
[* LISP: (TOUGH FI XNUMF FLONUMF STRI NG ANY FI XNUM) */

[11.5. More Details

Intgen has some compiler switches to enable/disable the use of certain types, including VALUE and
EVENT types used by Dannenberg’s score editing work, the SOUND type used by Fugue, and DEXT and
SEXT types added for Dale Amon. Enabling all of these is not likely to cause problems, and the chances
of an accidental use of these types getting through the compiler and linker seems very small.

XLISP: AN OBJECT-ORIENTED LISP

Appendix IV
XLISP: An Object-oriented Lisp

Version 2.0
February 6, 1988

by
David Michael Betz
127 Taylor Road
Peterborough, NH 03458

Copyright (c) 1988, by David Michael Betz
All Rights Reserved
Permission is granted for unrestricted non-commercial use

Page 149

Page 150 NYQUIST MANUAL

IV.1. Introduction

XLISP is an experimental programming language combining some of the features of Common Lisp
with an object-oriented extension capability. It was implemented to alow experimentation with object-
oriented programming on small computers.

Implementations of XLISP run on virtually every operating system. XLISP is completely written in the
programming language C and is easily extended with user written built-in functions and classes. It is
available in source form to non-commercial users.

Many Common Lisp functions are built into XLISP. In addition, XLISP defines the objects Object and
Class as primitives. Object is the only class that has no superclass and hence is the root of the class
hierarchy tree. Classisthe class of which all classes are instances (it is the only object that is an instance
of itself).

This document is a brief description of XLISP. It assumes some knowledge of LISP and some
understanding of the concepts of object-oriented programming.

I recommend the book Lisp by Winston and Horn and published by Addison Wesley for learning Lisp.
Thefirst edition of this book is based on MacLisp and the second edition is based on Common Lisp.

Y ou will probably also need a copy of Common Lisp: The Language by Guy L. Steele, Jr., published by
Digital Pressto use as areference for some of the Common Lisp functions that are described only briefly
in this document.

IV.2. A Note From The Author

If you have any problems with XLISP, feel free to contact me [me being David Betz - RBD] for help or
advice. Please remember that since XLISP is available in source form in a high level language, many
users [e.g. that Dannenberg fellow - RBD] have been making versions available on a variety of machines.
If you call to report a problem with a specific version, | may not be able to help you if that version runs on
a machine to which | don't have access. Please have the version number of the version that you are
running readily accessible before calling me.

If you find abug in XLISP, first try to fix the bug yourself using the source code provided. If you are
successful in fixing the bug, send the bug report along with the fix to me. If you don’t have accessto aC
compiler or are unable to fix a bug, please send the bug report to me and I'll try to fix it.

Any suggestions for improvements will be welcomed. Fedl free to extend the language in whatever
way suits your needs. However, PLEASE DO NOT RELEASE ENHANCED VERSIONS WITHOUT
CHECKING WITH ME FIRST!! | would like to be the clearing house for new features added to XLISP.
If you want to add features for your own personal use, go ahead. But, if you want to distribute your
enhanced version, contact me first. Please remember that the goal of XLISP is to provide a language to
learn and experiment with LISP and object-oriented programming on small computers. | don’t want it to
get so big that it requires megabytes of memory to run.

XLISP: AN OBJECT-ORIENTED LISP Page 151

IV.3. XLISP Command L oop

When XLISP is started, it first tries to load the workspace x| i sp. wks from the current directory. |f
that file doesn’'t exist, XLISP builds an initial workspace, empty except for the built-in functions and
symbols.

Then XLISP attemptsto load i ni t . | sp from the current directory. It then loads any files named as
parameters on the command line (after appending . | sp to their names).

XLISP then issues the following prompt:
>

Thisindicates that XLISP iswaiting for an expression to be typed.

When a complete expression has been entered, XLISP attempts to evaluate that expression. If the
expression evaluates successfully, XLISP prints the result and then returns to the initial prompt waiting
for another expression to be typed.

IV.4. Special Characters
When XLISP isrunning from a console, some control characters invoke operations:

 Backspace and Delete characters erase the previous character on the input line (if any).
* Control-U erases the entire input line.

* Control-C executes the TOP-LEVEL function.

» Control-G executes the CLEAN-UP function.

* Control-P executes the CONTINUE function.

* Control-B stops execution and enters the break command loop. Execution can be continued
by typing Control-P or (CONTINUE).

* Control-E turns on character echoing (Linux and Mac OS X only).
« Control-F turns off character echoing (Linux and Mac OS X only).
* Control-T evaluates the INFO function.

IV.5. Break Command L oop
When XLISP encounters an error while evaluating an expression, it attempts to handle the error in the
following way:

If the symbol * br eakenabl e* istrue, the message corresponding to the error is printed. If the error
is correctable, the correction message is printed.

If the symbol *t r acenabl e* istrue, atrace back is printed. The number of entries printed depends
on the value of the symbol *t racel i m t *. If thissymbol is set to something other than a number, the
entire trace back stack is printed.

XLISP then enters a read/eval/print loop to alow the user to examine the state of the interpreter in the
context of the error. This loop differs from the normal top-level read/eval/print loop in that if the user
invokes the function cont i nue, XLISP will continue from a correctable error. If the user invokes the

Page 152 NYQUIST MANUAL

function cl ean- up, XLISP will abort the break loop and return to the top level or the next lower
numbered break loop. When in abreak loop, XLISP prefixes the break level to the normal prompt.

If the symbol *br eakenabl e* isni |, XLISP looks for a surrounding errset function. If one is
found, XLISP examines the value of the print flag. If thisflagistrue, the error messageis printed. In any
case, XLISP causes the errset function call to returnni | .

If there is no surrounding errset function, XLISP prints the error message and returns to the top level.

IV.6. Data Types

There are severa different data types available to XLISP programmers.
e lists
* symbols
* strings
* integers
* characters
* floats
* objects
* arays
* streams
* subrs (built-in functions)
» fsubrs (specia forms)

» closures (user defined functions)

IV.7. The Evaluator
The process of evaluationin XLISP:
 Strings, integers, characters, floats, objects, arrays, streams, subrs, fsubrs and closures
evaluate to themselves.

» Symbols act as variables and are evaluated by retrieving the value associated with their
current binding.

* Lists are evaluated by examining the first element of the list and then taking one of the
following actions:
- If itisasymbol, the functional binding of the symbol is retrieved.

* If it is a lambda expression, a closure is constructed for the function described by the
lambda expression.

* If it isasubr, fsubr or closure, it stands for itsalf.

* Any other valueisan error.
Then, the value produced by the previous step is examined:

- If it is a subr or closure, the remaining list elements are evaluated and the subr or
closureis called with these evaluated expressions as arguments.

XLISP: AN OBJECT-ORIENTED LISP Page 153

* If it is an fsubr, the fsubr is called using the remaining list elements as arguments
(unevaluated).

« If it is a macro, the macro is expanded using the remaining list elements as arguments
(unevaluated). The macro expansion is then evaluated in place of the original macro
call.

IV.8. Lexical Conventions
The following conventions must be followed when entering XLISP programs.

Commentsin XLISP code begin with a semi-colon character and continue to the end of theline.

Symbol names in XLISP can consist of any sequence of non-blank printable characters except the
following:

)
Uppercase and lowercase characters are not distinguished within symbol names. All lowercase characters
are mapped to uppercase on input.

Integer literals consist of a sequence of digits optionally beginning with a+ or - . The range of vaues
an integer can represent is limited by the size of aC | ong on the machine on which XLISP is running.

Floating point literals consist of a sequence of digits optionally beginning with a + or - and including
an embedded decimal point. The range of values a floating point number can represent is limited by the
size of aC fl oat (doubl e on machines with 32 bit addresses) on the machine on which XLISP is
running.

Literal strings are sequences of characters surrounded by double quotes. Within quoted strings the
““\'"* character is used to allow non-printable charactersto be included. The codes recognized are:

* \\ meansthe character *‘\ "’
* \ n means newline

*\'t meanstab

* \'r meansreturn

* \ f meansform feed

* \ nnn means the character whose octal code is nnn

IV.9. Readtables

The behavior of the reader is controlled by a data structure caled a readtable. The reader uses the
symbol *r eadt abl e* to locate the current readtable. This table controls the interpretation of input
characters. Itisan array with 128 entries, one for each of the ASCII character codes. Each entry contains
one of the following things:

* NI L — Indicating an invalid character

e : CONSTI TUENT — Indicating a symbol constituent
 : VHI TE- SPACE — Indicating a whitespace character
* (: TMACRO . fun) — Terminating readmacro

Page 154 NY QUIST MANUAL

e (: NMACRO . fun) — Non-terminating readmacro
» : SESCAPE — Single escape character ('\')
* : MESCAPE — Multiple escape character ('[')

In the case of : TMACRO and : NMACRO, the fun component is afunction. This can either be a built-in
readmacro function or a lambda expression. The function should take two parameters. The first is the
input stream and the second is the character that caused the invocation of the readmacro. The readmacro
function should return NI L to indicate that the character should be treated as white space or a value

consed with NI L to indicate that the readmacro should be treated as an occurence of the specified value.
Of course, the readmacro code is free to read additional characters from the input stream.

XLISP defines several useful read macros:
* '<expr> == (quote <expr>)
» # <expr> == (function <expr>)
 #(<expr>...) == an array of the specified expressions
* #x<hdigits> == a hexadecima number (0-9,A-F)
* #o<odigits> == an octal humber (0-7)
* #b<bdigits> == abinary number (0-1)
» #A\<char> == the ASCII code of the character
* # ... [t == acomment
* #:<symbol> == an uninterned symbol
* ‘<expr> == (backquote <expr>)
e <expr> == (comma<expr>)

* ,@<expr> == (comma-at <expr>)

IV.10. Lambda Lists
There are several forms in XLISP that require that a *‘lambda list’’ be specified. A lambda list is a
definition of the arguments accepted by afunction. There are four different types of arguments.

The lambda list starts with required arguments. Required arguments must be specified in every call to
the function.

The required arguments are followed by the &optional arguments. Optional arguments may be
provided or omitted in acall. Aninitialization expression may be specified to provide a default value for
an &optional argument if it is omitted from a call. If no initialization expression is specified, an omitted
argument is initialized to NI L. It is also possible to provide the name of a suppl i ed- p variable that
can be used to determine if acall provided a value for the argument or if the initialization expression was
used. If specified, the supplied- p variable will be bound to T if a value was specified in the call and NI L
if the default value was used.

The &optional arguments are followed by the &rest argument. The &rest argument gets bound to the
remainder of the argument list after the required and & optiona arguments have been removed.

XLISP: AN OBJECT-ORIENTED LISP Page 155

The &rest argument is followed by the &key arguments. When a keyword argument is passed to a
function, apair of values appears in the argument list. The first expression in the pair should evaluate to a
keyword symbol (a symbol that beginswith a‘‘: *’). The value of the second expression is the value of
the keyword argument. Like &optional arguments, & key arguments can have initialization expressions
and supplied-p variables. In addition, it is possible to specify the keyword to be used in afunction call. If
no keyword is specified, the keyword obtained by adding a ‘‘: '’ to the beginning of the keyword
argument symbol is used. In other words, if the keyword argument symbol is f 00, the keyword will be
" foo.

The &key arguments are followed by the &aux variables. These are local variables that are bound
during the evaluation of the function body. It is possible to have initiaization expressions for the & aux
variables.

Here is the complete syntax for lambdallists:

(rarg...

[&optional [oarg | (oarg [init [svar]])]...]

[&restrarg]

[&key
[kerg | ([karg | (key karg)] [init [svar]])]...
&alow-other-keys]

[&aux
[aux | (aux [init])]...])

where:

rarg isarequired argument symbol
oarg is an & optional argument symbol
rargisthe &rest argument symbol
karg isa&key argument symbol

key is akeyword symbol

aux is an auxiliary variable symbol
init isaninitialization expression

svar is a supplied-p variable symbol

IV.11. Objects
Definitions:
* selector — a symbol used to select an appropriate method
» message — a selector and alist of actual arguments

» method — the code that implements a message
Since XLISP was created to provide a simple basis for experimenting with object-oriented programming,
one of the primitive data types included is object. In XLISP, an object consists of a data structure
containing a pointer to the object’s class as well as an array containing the values of the object’s instance
variables.

Officialy, thereis no way to see inside an object (look at the values of itsinstance variables). The only
way to communicate with an object is by sending it a message.

Y ou can send a message to an object using the send function. This function takes the object asitsfirst

Page 156 NYQUIST MANUAL

argument, the message selector as its second argument (which must be a symbol) and the message
arguments as its remaining arguments.

The send function determines the class of the receiving object and attempts to find a method
corresponding to the message selector in the set of messages defined for that class. If the message is not
found in the object’ s class and the class has a super-class, the search continues by looking at the messages
defined for the super-class. This process continues from one super-class to the next until a method for the
message isfound. |f no method isfound, an error occurs.

When amethod is found, the evaluator binds the receiving object to the symbol sel f and evaluates the
method using the remaining elements of the original list as arguments to the method. These arguments
are always evaluated prior to being bound to their corresponding formal arguments. The result of
evaluating the method becomes the result of the expression.

Within the body of a method, a message can be sent to the current object by caling the (send sel f
...). The method lookup starts with the object’s class regardless of the class containing the current
method.

Sometimes it is desirable to invoke a general method in a superclass even when it is overridden by a
more specific method in a subclass. This can be accomplished by calling send- super, which begins
the method lookup in the superclass of the class defining the current method rather than in the class of the
current object.

The send- super function takes a selector as its first argument (which must be a symbol) and the
message arguments as its remaining arguments. Notice that send- super can only be sent from within a
method, and the target of the message is always the current object (sel f). (send-super ...) is
similar to (send self ...) except that method lookup begins in the superclass of the class
containing the current method rather than the class of the current object.

IV.12. The**Object’’ Class
bj ect — thetop of the class hierarchy.

Messages:
: show— show an object’ sinstance variables.
returns — the object

: ¢l ass — return the class of an object
returns — the class of the object

;isa(:isa) class—testif object inheritsfrom class
returns—t if object is an instance of class or a subclass of class, otherwise ni |

. i snew— the default object initialization routine
returns — the object

XLISP: AN OBJECT-ORIENTED LISP Page 157

IV.13. The‘*Class’ Class

Cl ass — class of all object classes (including itself)

Messages.
:new — create a new instance of aclass
returns — the new class object

:isnew ivars [cvars[super]] — initialize anew class
ivars— thelist of instance variable symbols
cvars— thelist of class variable symbols
super — the superclass (default is object)
returns — the new class object

:answer msg fargs code — add a message to aclass
msg — the message symbol
fargs— the formal argument list (lambdalist)
code — alist of executable expressions
returns — the object

When a new instance of a class is created by sending the message : hew to an existing class, the
message : i snew followed by whatever parameters were passed to the : new message is sent to the
newly created object.

When a new classis created by sending the : new message to the object Cl ass, an optional parameter
may be specified indicating the superclass of the new class. If this parameter is omitted, the new class
will be a subclass of Obj ect . A class inherits al instance variables, class variables, and methods from
its super-class.

V.14. Profiling

The Xlisp 2.0 release has been extended with a profiling facility, which counts how many times and
whereeval isexecuted. A separate count is maintained for each named function, closure, or macro, and
a count indicates an eval in the immediately (Iexically) enclosing named function, closure, or macro.
Thus, the count gives an indication of the amount of time spent in a function, not counting nested function
cals. The list of all functions executed is maintained on the global *profi |l e* variable. These
functions in turn have * pr of i | e* properties, which maintain the counts. The profile system merely
increments counters and puts symbols on the * pr of i | e* list. It is up to the user to initialize data and
gather results. Profiling is turned on or off with the pr of i | e function. Unfortunately, methods cannot
be profiled with this facility.

[V.15. Symbols

» sel f — the current object (within a method context)
» *obar r ay* — the object hash table
» *st andar d- i nput * — the standard input stream

» *st andar d- out put * — the standard output stream

Page 158 NYQUIST MANUAL

e *error-out put * — the error output stream
e *trace- out put * — the trace output stream
» *debug-i 0* — the debug i/o stream
* *pr eakenabl e* — flag controlling entering break loop on errors
* *tracel i st* — list of names of functionsto trace
* *t racenabl e* — enable trace back printout on errors
* *tracel i m t* — number of levels of trace back information
» *eval hook* — user substitute for the evaluator function
* *appl yhook* — (not yet implemented)
* *r eadt abl e* — the current readtable
e *unbound* — indicator for unbound symbols
e *gc- f | ag* — controls the printing of gc messages
» *gc- hook* — function to call after garbage collection
e *integer-formt* —format for printing integers (**%d’ or *'%ld'")
« *f| oat - f or mat * — format for printing floats (‘* %g’")
e *print-case* — symbol output case (:upcase or :downcase)
There are several symbols maintained by the read/eval/print loop. The symbols +, ++, and +++ are
bound to the most recent three input expressions. The symbols *, ** and *** are bound to the most

recent three results. The symbol - is bound to the expression currently being evaluated. It becomes the
value of + at the end of the evaluation.

IV.16. Evaluation Functions
(eval expr) — evauate an xlisp expression
expr — the expression to be evaluated
returns — the result of evaluating the expression

(apply fun args) — apply afunction to alist of arguments
fun — the function to apply (or function symbol)
args — the argument list
returns — the result of applying the function to the arguments

(funcall fun arg...) — call afunction with arguments
fun — the function to call (or function symbol)
arg — arguments to pass to the function
returns — the result of calling the function with the arguments

(quote expr) — return an expression uneval uated
expr — the expression to be quoted (quoted)
returns — expr unevaluated

XLISP: AN OBJECT-ORIENTED LISP Page 159

(function expr) — get the functional interpretation
expr — the symbol or lambda expression (quoted)
returns — the functional interpretation

(backquote expr) — fill in atemplate
expr — the template
returns — a copy of the template with comma and comma-at
expressions expanded

(lambda args expr...) — make a function closure
args— formal argument list (lambda list) (quoted)
expr — expressions of the function body
returns — the function closure

(get-lambda-expression closure) — get the lambda expression
closure — the closure
returns — the original lambda expression

(macroexpand form) — recursively expand macro calls
form — the form to expand
returns — the macro expansion

(macroexpand-1 form) — expand a macro call
form — the macro call form
returns — the macro expansion

IV.17. Symbol Functions

(set sym expr) — set the value of a symbol
sym— the symbol being set
expr — the new value
returns — the new value

(setq [sym expr]...) — set the value of a symbol
sym — the symbol being set (quoted)
expr — the new value
returns — the new value

(psetq [sym expr]...) — parallel version of setq
sym— the symbol being set (quoted)
expr — the new value
returns — the new value

(setf [place expr]...) — set thevalue of afield
place — the field specifier (quoted):
sym — set value of a symbol

Page 160

(car expr) — set car of acons node
(cdr expr) — set cdr of acons node
(nth n expr) — set nth car of alist

(aref expr n) — set nth element of an array

(get sym prop) — set value of a property

(symbol-value sym) — set value of a symbol
(symbol-function sym) — set functional value of a symbol
(symbol-plist sym) — set property list of a symbol

expr — the new value
returns — the new value

NYQUIST MANUAL

(defun symfargs expr...) — define afunction (defmacro sym fargs expr...) — define amacro

sym— symbol being defined (quoted)

fargs— formal argument list (lambda list) (quoted)
expr — expressions constituting the body of the
function (quoted) returns — the function symbol

(gensym [tag]) — generate a symbol
tag — string or number
returns — the new symbol

(intern pname) — make an interned symbol
pname — the symbol’ s print name string
returns — the new symbol

(make-symbol pname) — make an uninterned symbol
pname — the symbol’ s print name string
returns — the new symbol

(symbol-name sym) — get the print name of a symbol
sym — the symbol
returns — the symbol’ s print name

(symbol-value sym) — get the value of a symbol
sym — the symbol
returns — the symbol’ s value

(symbol -function sym) — get the functional value of a symbol

sym — the symbol
returns — the symbol’ s functional value

(symbol-plist sym) — get the property list of asymbol
sym — the symbol
returns — the symbol’ s property list

(hash sym n) — compute the hash index for a symbol
sym— the symbol or string

XLISP: AN OBJECT-ORIENTED LISP

n — the table size (integer)
returns — the hash index (integer)

V.18. Property List Functions
(get sym prop) — get the value of a property
sym — the symbol
prop — the property symbol
returns — the property value or ni |

(putprop symval prop) — put a property onto a property list
sym — the symbol
val — the property value
prop — the property symbol
returns — the property value

(remprop sym prop) — remove a property

sym— the symbol
prop — the property symbol
returns—ni |

1V.19. Array Functions

(aref array n) — get the nth element of an array
array — the array
n — the array index (integer)
returns — the value of the array element

(make-array size) — make anew array
size — the size of the new array (integer)
returns — the new array

(vector expr...) — make an initialized vector
expr — the vector elements
returns — the new vector

IV.20. List Functions

(car expr) — return the car of alist node
expr — the list node
returns — the car of the list node

(cdr expr) — return the cdr of alist node
expr — the list node

Page 161

Page 162

returns — the cdr of the list node
(cxxr expr) — all cxxr combinations
(cxxxr expr) — all cxxxr combinations
(cxxoxxr expr) — all cxooxr combinations
(first expr) — a synonym for car
(second expr) — a synonym for cadr
(third expr) — a synonym for caddr
(fourth expr) — a synonym for cadddr
(rest expr) — asynonym for cdr

(cons exprl expr2) — construct a new list node
expr1 — the car of the new list node
expr2 — the cdr of the new list node
returns — the new list node

(list expr...) — create alist of values
expr — expressions to be combined into alist
returns — the new list

(append expr...) — append lists
expr — lists whose elements are to be appended
returns — the new list

(reverse expr) — reverse alist
expr — the list to reverse
returns — anew list in the reverse order

(last list) — return the last list node of alist
list —thelist
returns — the last list node in the list

(member expr list &key :test :test-not) — find an expression in alist
expr — the expression to find
list — thelist to search
‘test — the test function (defaults to eql)
:test-not — the test function (sense inverted)
returns — the remainder of the list starting with the expression

NYQUIST MANUAL

XLISP: AN OBJECT-ORIENTED LISP

(assoc expr alist & key :test :test-not) — find an expression in an a-list
expr — the expression to find
alist — the association list
‘test — the test function (defaults to eql)
‘test-not — the test function (sense inverted)
returns — the alist entry or ni |

(remove expr list & key :test :test-not) — remove elements from a list
expr — the element to remove
list — thelist
‘test — the test function (defaults to eql)
‘test-not — the test function (sense inverted)
returns — copy of list with matching expressions removed

(remove-if test list) — remove elements that pass test
test — the test predicate
list — thelist
returns — copy of list with matching elements removed

(remove-if-not test list) — remove elements that fail test
test — the test predicate
list — thelist
returns — copy of list with non-matching elements removed

(Iength expr) — find the length of alist, vector or string
expr — the list, vector or string
returns — the length of the list, vector or string

(nth n list) — return the nth element of alist
n — the number of the element to return (zero origin)
list — thelist
returns — the nth element or ni | if thelist isn’t that long

(nthedr n list) — return the nth cdr of alist
n — the number of the element to return (zero origin)
list — thelist
returns — the nth cdr or ni | if thelist isn’t that long

(mapc fen listl list...) — apply function to successive cars
fcn — the function or function name
listn — alist for each argument of the function
returns — the first list of arguments

(mapcar fen listl list...) — apply function to successive cars
fcn — the function or function name
listn — alist for each argument of the function
returns — alist of the values returned

Page 163

Page 164

(mapl fen listl list...) — apply function to successive cdrs
fcn — the function or function name
listn — alist for each argument of the function
returns — the first list of arguments

(maplist fen listl list...) — apply function to successive cdrs
fcn — the function or function name
listn — alist for each argument of the function
returns — alist of the values returned

(subst to from expr & key :test :test-not) — substitute expressions
to — the new expression
from — the old expression
expr — the expression in which to do the substitutions
‘test — the test function (defaults to eql)
‘test-not — the test function (sense inverted)
returns — the expression with substitutions

(sublis alist expr &key :test :test-not) — substitute with an a-list
alist — the association list
expr — the expression in which to do the substitutions
:test — the test function (defaults to eql)
‘test-not — the test function (sense inverted)
returns — the expression with substitutions

IV.21. Destructive List Functions
(rplacalist expr) — replace the car of alist node
list — the list node
expr — the new value for the car of the list node
returns — the list node after updating the car

(rplacd list expr) — replace the cdr of alist node
list — the list node
expr — the new value for the cdr of the list node
returns — the list node after updating the cdr

(nconc list...) — destructively concatenate lists
list — lists to concatenate
returns — the result of concatenating the lists

(delete expr & key :test :test-not) — delete elements from alist
expr — the element to delete
list —thelist
‘test — the test function (defaults to eql)

NYQUIST MANUAL

XLISP: AN OBJECT-ORIENTED LISP

:test-not — the test function (sense inverted)
returns — the list with the matching expressions deleted

(delete-if test list) — delete elements that pass test
test — the test predicate
list — thelist
returns — the list with matching elements del eted

(delete-if-not test list) — delete elements that fail test
test — the test predicate
list — the list
returns — the list with non-matching elements deleted

(sort list test) — sort alist
list — thelist to sort
test — the comparison function
returns — the sorted list

IV.22. Predicate Functions
(atom expr) — isthisan atom?
expr — the expression to check
returns—t if thevalueisan atom, ni | otherwise

(symbolp expr) — is this a symbol ?
expr — the expression to check
returns—t if the expressionisasymbol, ni | otherwise

(numberp expr) — is this a number?
expr — the expression to check
returns—t if the expression isanumber, ni | otherwise

(null expr) — isthis an empty list?
expr — the list to check
returns—t if thelistisempty, ni | otherwise

(not expr) — isthisfalse?
expr — the expression to check
return—t if thevalueisni | , ni | otherwise

(listp expr) —isthisalist?
expr — the expression to check
returns—t if thevalueisaconsorni |, ni | otherwise

(endp list) — isthisthe end of alist
list — thelist

Page 165

Page 166

returns—t if thevalueisni | , ni | otherwise

(consp expr) — isthis anon-empty list?
expr — the expression to check
returns—t if thevalueisacons, ni | otherwise

(integerp expr) — isthis an integer?
expr — the expression to check
returns—t if thevalueisaninteger, ni | otherwise

(floatp expr) — isthisafloat?
expr — the expression to check
returns—t if thevalueisafloat, ni | otherwise

(stringp expr) — isthisa string?
expr — the expression to check
returns—t if thevalueisastring, ni | otherwise

(characterp expr) — isthis a character?
expr — the expression to check
returns—t if thevalueisacharacter, ni | otherwise

(arrayp expr) — isthisan array?
expr — the expression to check
returns—t if thevalueisan array, ni | otherwise

(streamp expr) — is this a stream?
expr — the expression to check
returns—t if thevalueisastream, ni | otherwise

(objectp expr) — isthis an object?
expr — the expression to check
returns—t if thevaueisan object, ni | otherwise

(filep expr)® — isthisafile?
expr — the expression to check
returns—t if thevaueisan object, ni | otherwise

(boundp sym) — is avalue bound to this symbol ?
sym — the symbol

returns—t if avalueisbound to the symbol, ni | otherwise

(fboundp sym) — is afunctional value bound to this symbol ?
sym — the symbol

SThisis not part of standard XLISP nor isit built-in. Nyquist definesit though.

NYQUIST MANUAL

XLISP: AN OBJECT-ORIENTED LISP

returns—t if afunctional value is bound to the symboal,
ni | otherwise

(minusp expr) — isthis number negative?
expr — the number to test
returns—t if the number is negative, ni | otherwise

(zerop expr) — isthis number zero?
expr — the number to test
returns—t if the number iszero, ni | otherwise

(plusp expr) — is this number positive?
expr — the number to test
returns—t if the number is positive, ni | otherwise

(evenp expr) — isthisinteger even?
expr — the integer to test
returns—t if theinteger iseven, ni | otherwise

(oddp expr) — isthisinteger odd?
expr — the integer to test
returns—t if theinteger isodd, ni | otherwise

(eq expr1 expr2) — are the expressions identical ?
exprl — thefirst expression
expr2 — the second expression
returns—t if they are equal, ni | otherwise

(egl exprl expr2) — are the expressions identical ? (works with all numbers)
exprl — thefirst expression
expr2 — the second expression
returns—t if they areequal, ni | otherwise

(equal exprl expr2) — are the expressions equal ?
exprl — thefirst expression
expr2 — the second expression
returns—t if they areequal, ni | otherwise

IV.23. Control Constructs
(cond pair...) — evaluate conditionally
pair — pair consisting of:
(pred expr...)
where;
pred — is apredicate expression
expr — evaluated if the predicateisnot ni |

Page 167

Page 168 NYQUIST MANUAL

returns — the value of the first expression whose predicate is not ni |

(and expr...) — thelogical and of alist of expressions
expr — the expressions to be anded
returns — ni | if any expression evaluates to ni | , otherwise the value of the last expression
(evaluation of expressions stops after the first expression that evaluatestoni |)

(or expr...) —thelogical or of alist of expressions
expr — the expressions to be ored
returns — ni | if all expressions evaluate to ni | , otherwise the value of the first non-ni |
expression (evaluation of expressions stops after the first expression that does not
evaluatetoni |)

(if texpr exprl [expr2]) — evaluate expressions conditionally
texpr — the test expression
exprl — the expression to be evaluated if texpr isnon-ni |
expr2 — the expression to be evaluated if texpr isni |
returns — the value of the selected expression

(when texpr expr...) — evaluate only when a condition istrue
texpr — the test expression
expr — the expression(s) to be evaluated if texpr is non-ni |
returns — the value of the last expression or ni |

(unless texpr expr...) — evaluate only when a condition isfalse
texpr — the test expression
expr — the expression(s) to be evaluated if texpr isni |
returns — the value of the last expression or ni |

(case expr case...) — select by case

expr — the selection expression

case — pair consisting of:
(value expr...)

where:
value — isasingle expression or alist of expressions (uneval uated)
expr — are expressions to execute if the case matches

returns — the value of the last expression of the matching case

(let (binding...) expr...) — create local bindings (let* (binding...) expr...) — let with sequential binding
binding — the variable bindings each of which is either:
1) asymbol (whichisinitialized toni |)
2) alist whose car is a symbol and whose cadr is an initialization expression
expr — the expressions to be evaluated
returns — the value of the last expression

(flet (binding...) expr..) — create loca functions (labels (binding...) expr...) — flet with recursive
functions (macrolet (binding...) expr...) — create local macros

XLISP: AN OBJECT-ORIENTED LISP Page 169

binding — the function bindings each of whichiis:
(symfargsexpr...)
where:
sym— the function/macro name
fargs— formal argument list (lambda list)
expr — expressions constituting the body of the function/macro
expr — the expressions to be evaluated
returns — the value of the last expression

(catch symexpr...) — evauate expressions and catch throws
sym— the catch tag
expr — expressions to evaluate
returns — the value of the last expression the throw expression

(throw sym [expr]) — throw to a catch
sym — the catch tag
expr — the value for the catch to return (defaultstoni |)
returns — never returns

(unwind-protect expr cexpr...) — protect evaluation of an expression
expr — the expression to protect
cexpr — the cleanup expressions
returns — the value of the expression
Note: unwind-protect guarantees to execute the cleanup expressions even if a non-local exit
terminates the evaluation of the protected expression

IV.24. L ooping Constructs
(loop expr...) — basic looping form
expr — the body of the loop
returns — never returns (must use non-local exit)

(do (binding...) (texpr rexpr...) expr...) (do* (binding...) (texpr rexpr...) expr...)
binding — the variable bindings each of which is either:
1) asymbol (whichisinitialized toni |)
2) alist of the form: (syminit [step]) where:
sym— isthe symbol to bind
init — istheinitial value of the symbol
step — isastep expression
texpr — the termination test expression
rexpr — result expressions (the default isni |)
expr — the body of the loop (treated like an implicit prog)
returns — the value of the last result expression

(dolist (symexpr [rexpr]) expr...) — loop through alist
sym— the symbol to bind to each list element

Page 170 NYQUIST MANUAL

expr — the list expression
rexpr — the result expression (the default isni |)
expr — the body of the loop (treated like an implicit prog)

(dotimes (sym expr [rexpr]) expr...) — loop from zeroto n-1
sym— the symbol to bind to each value from O to n-1
expr — the number of timesto loop
rexpr — the result expression (the default isni |)
expr — the body of the loop (treated like an implicit prog)

IV.25. The Program Feature
(prog (binding...) expr...) — the program feature (prog* (binding...) expr...) — prog with sequential
binding
binding — the variable bindings each of which is either:
1) asymbol (whichisinitializedtoni |)
2) alist whose car is a symbol and whose cadr is an initialization expression
expr — expressions to evaluate or tags (symbols)
returns— ni | or the argument passed to the return function

(block name expr...) — named block
name — the block name (symbol)
expr — the block body
returns — the value of the last expression

(return [expr]) — cause a prog construct to return avaue
expr — the value (defaultstoni |)
returns — never returns

(return-from name [value]) — return from a named block
name — the block name (symbol)
value — the value to return (defaultsto ni |)
returns — never returns

(tagbody expr...) — block with labels
expr — expression(s) to evaluate or tags (symbols)
returns— ni |

(go sym) — go to atag within atagbody or prog
sym — the tag (quoted)
returns — never returns

(progv dist vlist expr...) — dynamically bind symbols
dist — list of symbols
vlist — list of valuesto bind to the symbols
expr — expression(s) to evaluate

XLISP: AN OBJECT-ORIENTED LISP

returns — the value of the last expression

(progl exprl expr...) — execute expressions sequentially
exprl — thefirst expression to evaluate
expr — the remaining expressions to evaluate
returns — the value of the first expression

(prog2 exprl expr2 expr...) — execute expressions sequentially
exprl — thefirst expression to evaluate
expr2 — the second expression to evaluate
expr — the remaining expressions to evaluate
returns — the value of the second expression

(progn expr...) — execute expressions sequentially
expr — the expressions to evaluate
returns — the value of the last expression (or ni |)

IV.26. Debugging and Error Handling
(trace sym) — add a function to the trace list
sym— the function to add (quoted)
returns — the trace list

(untrace sym) — remove afunction from the trace list
sym — the function to remove (quoted)
returns — the trace list

(error emsg [arg]) — signal a non-correctable error
emsg — the error message string

arg — the argument expression (printed after the message)

returns — never returns

(cerror cmsg emsg [arg]) — signal a correctable error
cmsg — the continue message string

emsg — the error message string

arg — the argument expression (printed after the message)

returns— ni | when continued from the break loop

(break [bmsg [arg]]) — enter a break loop

bmsg — the break message string (defaultsto * * br eak* *)
arg — the argument expression (printed after the message)

returns— ni | when continued from the break loop

(clean-up) — clean-up after an error
returns — never returns

Page 171

Page 172 NYQUIST MANUAL

(top-level) — clean-up after an error and return to the top level
returns — never returns

(continue) — continue from a correctable error
returns — never returns

(errset expr [pflag]) — trap errors
expr — the expression to execute
pflag — flag to control printing of the error message
returns — the value of the last expression consed with ni |
orni | onerror

(baktrace [n]) — print n levels of trace back information
n — the number of levels (defaultsto all levels)
returns— ni |

(evalhook expr ehook ahook [env]) — evaluate with hooks
expr — the expression to evaluate
ehook — the value for * eval hook*
ahook — the value for * appl yhook*
env — the environment (defaultisni |)
returns — the result of evaluating the expression

(profile flag)® — turn profiling on or off.
flag— ni | turns profiling off, otherwise on
returns — the previous state of profiling.

IV.27. Arithmetic Functions

(truncate expr) — truncates a floating point number to an integer
expr — the number
returns — the result of truncating the number

(float expr) — converts an integer to a floating point number
expr — the number
returns — the result of floating the integer

(+ expr...) — add alist of numbers
expr — the numbers
returns — the result of the addition

(- expr...) — subtract alist of numbers or negate a single number
expr — the numbers

5Thisis not a standard XLISP 2.0 function.

XLISP: AN OBJECT-ORIENTED LISP

returns — the result of the subtraction

(* expr...) — multiply alist of numbers
expr — the numbers
returns — the result of the multiplication

(/ expr...) — divide alist of numbers
expr — the numbers
returns — the result of the division

(1+ expr) — add one to a number
expr — the number
returns — the number plus one

(1- expr) — subtract one from a number
expr — the number
returns — the number minus one

(rem expr...) — remainder of alist of numbers
expr — the numbers
returns — the result of the remainder operation

(min expr...) — the smallest of alist of numbers
expr — the expressions to be checked
returns — the smallest number in the list

(max expr...) — thelargest of alist of numbers
expr — the expressions to be checked
returns — the largest number in the list

(abs expr) — the absolute value of a number
expr — the number
returns — the absolute value of the number

(ged nl n2...) — compute the greatest common divisor
nl — the first number (integer)
n2 — the second number(s) (integer)
returns — the greatest common divisor

(random n) — compute a random number between 0 and n-1 inclusive

n — the upper bound (integer)
returns — arandom number

(rrandom) — compute a random real number between 0 and 1 inclusive

returns — arandom floating point number

Page 173

Page 174 NY QUIST MANUAL

(sin expr) — compute the sine of a number
expr — the floating point number
returns — the sine of the number

(cos expr) — compute the cosine of a number
expr — the floating point number
returns — the cosine of the number

(tan expr) — compute the tangent of a number
expr — the floating point number
returns — the tangent of the number

(atan expr [expr2])’ — compute the arctangent
expr — the value of x
expr2 — the value of y (default value is 1.0)
returns — the arctangent of x/y

(expt x-expr y-expr) — compute x to the y power
x-expr — the floating point number
y-expr — the floating point exponent
returns — x to the y power

(exp x-expr) — compute e to the x power
x-expr — the floating point number
returns — e to the x power

(sgrt expr) — compute the square root of a number
expr — the floating point number
returns — the square root of the number

(<nl1n2..) —testforlessthan
(<=n1n2..) —test for less than or equal to
(=n1n2..) —testfor equal to
(/=nln2..) — test for not equa to
(>=n1n2...) — test for greater than or equal to
(>n1n2...) — test for greater than
nl — the first number to compare
n2 — the second number to compare
returns—t if the results of comparing n1 with n2, n2 with n3, etc., are all true.

"Thisis not astandard XLISP 2.0 function.

XLISP: AN OBJECT-ORIENTED LISP

IV.28. Bitwise L ogical Functions

(logand expr...) — the bitwise and of alist of numbers
expr — the numbers
returns — the result of the and operation

(logior expr...) — the bitwise inclusive or of alist of numbers
expr — the numbers
returns — the result of the inclusive or operation

(logxor expr...) — the bitwise exclusive or of alist of numbers
expr — the numbers
returns — the result of the exclusive or operation

(lognot expr) — the bitwise not of a number
expr — the number
returns — the bitwise inversion of number

V.29. String Functions

(string expr) — make a string from an integer ascii value
expr — the integer
returns — a one character string

(string-search pat str & key :start :end)® — search for pattern in string
pat — astring to search for
str — the string to be searched
:start — the starting offset in str
:end — the ending offset + 1
returns — index of pat in str or NIL if not found

(string-trim bag str) — trim both ends of a string
bag — a string containing charactersto trim
str — the string to trim
returns — atrimed copy of the string

(string-left-trim bag str) — trim the |eft end of a string
bag — a string containing charactersto trim
str — the string to trim
returns — atrimed copy of the string

(string-right-trim bag str) — trim the right end of a string
bag — a string containing charactersto trim
str — the string to trim

8Thisis not a standard XLISP 2.0 function.

Page 175

Page 176 NYQUIST MANUAL

returns — atrimed copy of the string

(string-upcase str & key :start :end) — convert to uppercase
str — the string
:Start — the starting offset
:end — the ending offset + 1
returns — a converted copy of the string

(string-downcase str & key :start :end) — convert to lowercase
str — the string
:start — the starting offset
:end — the ending offset + 1
returns — a converted copy of the string

(nstring-upcase str & key :start :end) — convert to uppercase
str — the string
:start — the starting offset
:end — the ending offset + 1
returns — the converted string (not a copy)

(nstring-downcase str & key :start :end) — convert to lowercase
str — the string
:start — the starting offset
:end — the ending offset + 1
returns — the converted string (not a copy)

(strcat expr...) — concatenate strings
expr — the strings to concatenate
returns — the result of concatenating the strings

(subseg string start [end]) — extract a substring
string — the string
start — the starting position (zero origin)
end — the ending position + 1 (defaults to end)
returns — substring between start and end

(string< strl str2 & key :startl :endl :start2 :end2) (string<= strl str2 &key :startl :endl :start2 :end2)
(string=strl str2 & key :startl :endl :start2 :end2)
(string/=strl str2 & key :startl :endl :start2 :end2)
(string>= strl str2 &key :startl :endl :start2 :end2)
(string> strl str2 & key :startl :endl :start2 :end2)
str1 — thefirst string to compare
str2 — the second string to compare
:startl — first substring starting offset
:end1 — first substring ending offset + 1
:start2 — second substring starting offset
:end2 — second substring ending offset + 1

XLISP: AN OBJECT-ORIENTED LISP

returns—t if predicateistrue, ni | otherwise
Note: caseis significant with these comparison functions.

(string-lessp strl str2 & key :startl :endl :start2 :end?2)
(string-not-greaterp strl str2 & key :startl :endl :start2 :end2)
(string-equalp str1 str2 & key :startl :endl :start2 :end2)
(string-not-equalp str1 str2 & key :startl :endl :start2 :end2)
(string-not-lessp strl str2 & key :startl :endl :start2 :end2)
(string-greaterp strl str2 & key :startl :endl :start? :end2)

str1 — thefirst string to compare

str2 — the second string to compare

:startl — first substring starting offset

:end1 — first substring ending offset + 1

:start2 — second substring starting offset

:end2 — second substring ending offset + 1

returns—t if predicateistrue, ni | otherwise

Note: caseis not significant with these comparison functions.

IV.30. Character Functions

(char string index) — extract a character from a string
string — the string
index — the string index (zero relative)
returns — the ascii code of the character

(upper-case-p chr) — isthis an upper case character?
chr — the character
returns—t if the character is upper case, ni | otherwise

(lower-case-p chr) — isthis alower case character?
chr — the character
returns—t if the character islower case, ni | otherwise

(both-case-p chr) — isthis an aphabetic (either case) character?
chr — the character
returns—t if the character is aphabetic, ni | otherwise

(digit-char-p chr) — isthis adigit character?
chr — the character

returns — the digit weight if character isadigit, ni | otherwise

(char-code chr) — get the ascii code of a character
chr — the character
returns — the ascii character code (integer)

(code-char code) — get the character with a specified ascii code

Page 177

Page 178

code — the ascii code (integer)
returns — the character with that code or ni |

(char-upcase chr) — convert a character to upper case
chr — the character
returns — the upper case character

(char-downcase chr) — convert a character to lower case
chr — the character
returns — the lower case character

(digit-char n) — convert adigit weight to a digit
n — the digit weight (integer)
returns — the digit character or ni |

(char-int chr) — convert a character to an integer
chr — the character
returns — the ascii character code

(int-char int) — convert an integer to a character
int — the ascii character code
returns — the character with that code

(char< chrlchr2...)

(char<=chrlchr2...)

(char=chrlchr2...)

(char/=chrlchr2...))

(char>=chrlchr2...)

(char> chrlchr2...)
chrl — the first character to compare
chr2 — the second character(s) to compare
returns—t if predicateistrue, ni | otherwise

Note: caseis significant with these comparison functions.

(char-lessp chrl chr2...)

(char-not-greaterp chrl chr2...)

(char-equalp chrl chr2...)

(char-not-equalp chrl chr2...)

(char-not-lessp chrl chr2..))

(char-greaterp chrl chr2...)
chrl — thefirst string to compare
chr2 — the second string(s) to compare
returns—t if predicateistrue, ni | otherwise

Note: caseis not significant with these comparison functions.

NYQUIST MANUAL

XLISP: AN OBJECT-ORIENTED LISP

IV.31. Input/Output Functions

(read [stream [eof [rflag]]]) — read an expression
stream — the input stream (default is standard input)
eof — the value to return on end of file (defaultisni |)
rflag — recursive read flag (default isni |)
returns — the expression read

(print expr [stream]) — print an expression on anew line
expr — the expression to be printed
stream — the output stream (default is standard output)
returns — the expression

(prinl expr [stream]) — print an expression
expr — the expression to be printed
stream — the output stream (default is standard output)
returns — the expression

(princ expr [stream]) — print an expression without quoting
expr — the expressions to be printed
stream — the output stream (default is standard output)
returns — the expression

(pprint expr [stream]) — pretty print an expression
expr — the expressions to be printed
stream — the output stream (default is standard output)
returns — the expression

(terpri [stream]) — terminate the current print line
stream — the output stream (default is standard output)
returns—ni |

(flatsize expr) — length of printed representation using prinl
expr — the expression
returns — the length

(flatc expr) — length of printed representation using princ
expr — the expression
returns — the length

IV.32. The Format Function
(format streamfmt arg...) — do formated output
stream — the output stream
fmt — the format string
arg — the format arguments
returns — output string if streamisni | , ni | otherwise

Page 179

Page 180 NYQUIST MANUAL

The format string can contain characters that should be copied directly to the output and formatting
directives. The formatting directives are:
~A — print next argument using princ
~S — print next argument using prinl
~% — start anew line
~~ — print atilde character
~<newline> — ignore this one newline and white space on the
next line up to the first non-white-space character or newline. This
allows strings to continue across multiple lines

IV.33. File1/O Functions
Note that files are ordinarily opened as text. Binary files (such as standard midi files) must be opened
with open- bi nary on non-unix systems.
(open fname & key :direction) — open afile stream
fname — the file name string or symbol
:direction — :input or :output (default is :input)
returns — a stream

(open-binary fname & key :direction) — open abinary file stream
fname — the file name string or symbol
:direction — :input or :output (default is :input)
returns — a stream

(close stream) — close afile stream
stream — the stream
returns—ni |

(setdir path)® — set current directory
path — the path of the new directory
returns — the resulting full path, e.g. (setdir ".") gets the current working directory, or ni | if an
error occurs

(listdir path)10 — get adirectory listing
path — the path of the directory to be listed
returns — list of filenamesin the directory

(get-temp-path) 11 — get a path where a temporary file can be created. Under Windows, this is based on
environment variables. If XLISP is running as a sub-process to Java, the environment may not
exist, in which case the default result is the unfortunate choicec: \ wi ndows\ .

9Thisis not a standard XLISP 2.0 function.
0Thisis not a standard XL1SP 2.0 function.

Thisis not astandard XLISP 2.0 function.

XLISP: AN OBJECT-ORIENTED LISP Page 181

returns — the resulting full path as a string

(read-char [stream]) — read a character from a stream
stream — the input stream (default is standard input)
returns — the character

(peek-char [flag [stream]]) — peek at the next character
flag — flag for skipping white space (defaultisni |)
stream — the input stream (default is standard input)
returns — the character (integer)

(write-char ch [stream]) — write a character to a stream
ch — the character to write
stream — the output stream (default is standard output)
returns — the character

(read-int [stream [length]]) — read a binary integer from a stream
stream — the input stream (default is standard input)
length — the length of the integer in bytes (default is 4)
returns — the integer
Note: Integers are assumed to be big-endian (high-order byte first) and signed, regardliess of the
platform. To read little-endian format, use a negative number for the length, e.g. -4
indicates a 4-bytes, low-order byte first. The file should be opened in binary mode.

(write-int ch [stream [length]]) — write abinary integer to a stream

ch — the character to write

stream — the output stream (default is standard output)

length — the length of the integer in bytes (default is 4)

returns — the integer

Note: Integers are assumed to be big-endian (high-order byte first) and signed, regardiess of the
platform. To write in little-endian format, use a negative number for the length, e.g. -4
indicates a 4-bytes, low-order byte first. The file should be opened in binary mode.

(read-float [stream [length]]) — read a binary floating-point number from a stream
stream — the input stream (default is standard input)
length — the length of the float in bytes (default is 4, legal values are -4, -8, 4, and 8)
returns — the integer
Note: Floats are assumed to be big-endian (high-order byte first) and signed, regardless of the
platform. To read little-endian format, use a negative number for the length, e.g. -4
indicates a 4-bytes, low-order byte first. The file should be opened in binary mode.

(write-float ch [stream [length]]) — write a binary floating-point number to a stream
ch — the character to write
stream — the output stream (default is standard output)
length — the length of the float in bytes (default is 4, legal values are -4, -8, 4, and 8)
returns — the integer
Note: Floats are assumed to be big-endian (high-order byte first) and signed, regardless of the

Page 182 NYQUIST MANUAL

platform. To write in little-endian format, use a negative number for the length, e.g. -4
indicates a 4-bytes, low-order byte first. The file should be opened in binary mode.

(read-line [stream]) — read aline from a stream
stream — the input stream (default is standard input)
returns — the string

(read-byte [stream]) — read a byte from a stream
stream — the input stream (default is standard input)
returns — the byte (integer)

(write-byte byte [stream]) — write a byte to a stream
byte — the byte to write (integer)
stream — the output stream (default is standard output)
returns — the byte (integer)

V.34. String Stream Functions

These functions operate on unnamed streams. An unnamed output stream collects characters sent to it
when it is used as the destination of any output function. The functions
get - out put - st ream st ri ng and string or alist of characters.

An unnamed input stream is setup with the make- stri ng-i nput - st r eamfunction and returns
each character of the string when it is used as the source of any input function.

(make-string-input-stream str [start [end]])
str — the string
start — the starting offset
end — the ending offset + 1
returns — an unnamed stream that reads from the string

(make-string-output-stream)
returns — an unnamed output stream

(get-output-stream-string stream)
stream — the output stream
returns — the output so far as a string
Note: the output stream is emptied by this function

(get-output-stream-list stream)
stream — the output stream
returns — the output so far asalist
Note: the output stream is emptied by this function

XLISP: AN OBJECT-ORIENTED LISP Page 183

I'V.35. System Functions
Note: the | oad function first tries to load afile from the current directory. A . | sp extension is added

if there is not already an aphanumeric extension following a period. If that fails, XLISP searches the
path, which is obtained from the XLISPPATH environment variable in Unix and
HKEY_LOCAL_MACHINE\SOFTWARE\CMU\Nyquist\XLISPPATH under Win32. (The Macintosh
version has no search path.)
(load fname & key :verbose :print) — load a source file

fname — the filename string or symbol

:verbose — the verbose flag (default ist)

:print — the print flag (defaultisni |)

returns — the filename

(save fname) — save workspace to afile
fname — the filename string or symbol
returns—t if workspace was written, ni | otherwise

(restore fname) — restore workspace from afile
fname — the filename string or symbol
returns— ni | on failure, otherwise never returns

(dribble [fname]) — create a file with a transcript of a session
fname — file name string or symbol (if missing, close current transcript)
returns—t if the transcript is opened, ni | if itisclosed

(gc) — force garbage collection
returns— ni |

(expand num) — expand memory by adding segments
num — the number of segmentsto add
returns — the number of segments added

(alloc num) — change number of nodesto allocate in each segment
num — the number of nodes to alocate
returns — the old number of nodesto allocate

(info) — show information about memory usage.
returns—ni |

(room) — show memory allocation statistics
returns— ni |

(type-of expr) — returns the type of the expression
expr — the expression to return the type of
returns— ni | if thevalueisni | otherwise one of the symbols:
SYMBOL — for symbols
OBJECT — for objects

Page 184 NYQUIST MANUAL

CONS — for conses

SUBR — for built-in functions

FSUBR — for special forms
CLOSURE — for defined functions
STRING — for strings

FIXNUM — for integers

FLONUM — for floating point numbers
CHARACTER — for characters
FILE-STREAM — for file pointers
UNNAMED-STREAM — for unnamed streams
ARRAY — for arrays

(peek addrs) — peek at alocation in memory
addrs— the address to peek at (integer)
returns — the value at the specified address (integer)

(poke addrs value) — poke a value into memory
addrs — the address to poke (integer)
value — the value to poke into the address (integer)
returns — the value

(bigendiap) — is this a big-endian machine?
returns — T if this a big-endian architecture, storing the high-order byte of an integer at the
lowest byte address of the integer; otherwise, NIL.12

(address-of expr) — get the address of an xlisp node
expr — the node
returns — the address of the node (integer)

(exit) — exit xlisp
returns — never returns

(setup-console) — set default console attributes

returns— NIL

Note: Under Windows, Nyquist normally starts up in a medium-sized console window with black
text and a white background, with a window title of ‘*Nyquist.”’” This is normally
accomplished by calling set up- consol e insyst em | sp. In Nyquist, you can avoid
this behavior by setting *set up-consol e* to NIL in your init.|sp file If
set up-consol e is not called, Nyquist uses standard input and output as is. This is
what you want if you are running Nyquist inside of emacs, for example.

(echoenabled flag) — turn console input echoing on or off
flag— T to enable echo, NIL to disable
returns— NIL

12Thisis not astandard XLISP 2.0 function.

XLISP: AN OBJECT-ORIENTED LISP Page 185

Note: This function is only implemented under Linux and Mac OS X. If Nyquist I/O is redirected
through pipes, the Windows version does not echo the input, but the Linux and Mac
versions do. You can turn off echoing with this function. Under windows it is defined to
do nothing.

IVV.36. Filel/O Functions

IVV.36.1. Input from aFile

To open a file for input, use the open function with the keyword argument : di recti on set to
;i nput. To open afile for output, use the open function with the keyword argument : di recti on
setto: out put . The open function takes a single required argument which is the name of the file to be
opened. This name can be in the form of a string or a symbol. The open function returns an object of
type FI LE- STREAMIT it succeeds in opening the specified file. It returns the value ni | if it fails. In
order to manipulate the file, it is necessary to save the value returned by the open function. This is
usually done by assigning it to a variable with the set q special form or by binding it using | et or
| et *. Hereisan example:

(setq fp (open "init.lsp" :direction :input))

Evaluating this expression will result in the filei ni t. | sp being opened. The file object that will be
returned by the open function will be assigned to the variable f p.

It is now possible to use the file for input. To read an expression from the file, just supply the value of
thef p variable as the optional stream argument tor ead.
(read fp)
Evaluating this expression will result in reading the first expression from the fileinit. | sp. The
expression will be returned as the result of the r ead function. More expressions can be read from the
file using further calls to the r ead function. When there are no more expressions to read, the r ead
function will return ni | (or whatever value was supplied as the second argument to r ead).

Once you are done reading from the file, you should close it. To close the file, use the following
expression:
(close fp)
Evaluating this expression will cause the file to be closed.

1V.36.2. Output to a File
Writing to afile is pretty much the same as reading from one. You need to open the file first. This
time you should use the open function to indicate that you will do output to thefile. For example:
(setqg fp (open "test.dat"” :direction :output))
Evaluating this expression will open thefilet est . dat for output. If the file already exists, its current
contents will be discarded. If it doesn't already exigt, it will be created. In any case, a Fl LE- STREAM
object will be returned by the OPEN function. Thisfile object will be assigned to the f p variable.

It is now possible to write to this file by supplying the value of the f p variable as the optional stream
parameter inthe pri nt function.

(print "Hello there" fp)

Page 186 NYQUIST MANUAL

Evaluating this expression will result in the string ‘‘Hello there’’ being written to the file t est . dat .
More data can be written to the file using the same technique.

Once you are done writing to the file, you should close it. Closing an output file is just like closing an
input file.
(close fp)
Evaluating this expression will close the output file and make it permanent.

1V.36.3. A Slightly More Complicated File Example
This example shows how to open a file, read each Lisp expression from the file and print it. It
demonstrates the use of files and the use of the optiona stream argument to ther ead function.
(do* ((fp (open "test.dat" :direction :input))
(ex (read fp) (read fp)))

((null ex) nil)
(print ex))

XLISP: AN OBJECT-ORIENTED LISP Page 187

Refer ences

[Dannenberg 89] Dannenberg, R. B. and C. L. Fraley. Fugue: Composition and Sound Synthesis With
Lazy Evaluation and Behavioral Abstraction. In T. Wellsand D. Butler (editor), Proceedings of the 1989

International Computer Music Conference, pages 76-79. International Computer Music Association, San
Francisco, 1989.

[Touretzky 84] Touretzky, David S. LISP: a gentle introduction to symbolic computation. Harper &
Row, New Y ork, 1984.

Page 188 NYQUIST MANUAL

INDEX

| ndex

179
ICall 92
IClock 89
lcsec 87
1Def 90
IEnd 91
Imsec 87
IRamp 91
|Rate 84
1Seti 92
1Setv 92
ITempo 83

(Adagio articulation) 82
#define'd macros 147

% (Adagio thirtysecond note) 81

* 173

Ad-Hertz 40,75
applyhook 158
autonorm 75
autonorm-max-samples 75
autonorm-previous-peak 75
autonorm-target 75
autonorm-type 75
autonormflag 75
breakenable 75, 151, 152, 158
control-srate 14, 56, 75
debug-io 158
default-control-srate 75
*default-plot-filer 62
default-sf-dir 58, 75
default-sf-format 75
default-sf-srate 60, 75
default-sound-srate 75
error-output 157
evalhook 158
file-separator 75
float-format 158
*gc-flagt 158
gc-hook 158
integer-format 158
loud 13

obarray 157
plotscript-file 62
print-case 158
readtable 153, 158
rdt 76, 147
sound-srate 14, 56, 76
soundenable 76
standard-input 157
standard-output 157
start 14

stop 14

sustain 13

table 75
trace-output 158
tracelimit 151, 158
tracelist 158
tracenable 76, 151, 158
transpose 13
unbound 158

warp 13, 56

+ 172

, (Adagio) 87
- 172
. (Adagio) 81

[173
/= 174

1+ 173
1- 173

:answer 157
.class 156
isnew 156, 157
:new 157
:show 156

- (Adagio) 87

< 174
<= 174

= 174

> 174
>= 174

A440 40

Abs 173

Abs-env 56

Absolutevalue 53, 64
Access samples 37
Accidentals 80

Accumulate pattern 102
Adagio 79

Add offset tosound 64

Add tofilesamples 61
Add-action-to-workspace 120
Add-to-workspace 120
Additive synthesis, gongs 10
Address-of 184

Aftertouch 88

Agc 124

Algorithmic Composition 99
All passfilter 50

Alloc 183

Allpass2 52
Allpoles-from-lpc 94
Alpassfilter 50

Amosc 46

Analog synthesizer 129
And 168

Append 162

Apply 158
Apply-banded-bass-boost 126
Apply-banded-delay 126
Apply-banded-treble-boost 126
Approximation 47

Arc sinedistribution 108
Aref 161

Areson 51

Args 96

Argumentsto alisp function 96
Arithmetic Functions 172
Array from sound 38

Array Functions 161

Arrayp 166
Articulation 79, 82

Assoc 162

Asterisk 79

At 56

At Transformation 16

Atan 174
Atom 165
Atone 51

Attributes 79
Automatic gain control

124

Autonorm-off 27, 58, 59

Autonorm-on 27, 59
Average 64

Backquote 159
Backward 125
Baktrace 172

Banded bassboost 126
Banded delay 126

Banded treble boost 126

Bandfx.Isp 126
Bandpassfilter 51
Bandpass2 52

Bartok 85
Behaviora abstraction 13

Behaviors 41
Bell sound 10, 11

Bernoulli distribution 109

Betadistribution 108
Big endian 184
Bigendiap 184

Page 189

Bilateral exponential distribution 106

Binary files 180

Binomial distribution 109
Biquad 52

Biquad-m 52
Bitwise Logical Functions 175

Blank 79
Block 170

Both-case-p 177
Boundp 6, 166
Brasssound 11
Break 151, 171
Build-harmonic 6, 42

Buzz 46

Call command 92

Car 161

Case 80, 168

Catch 169
Cauchy distribution 106
Cdr 161

Cerror 171

Change directory 180

Char 177

Char-code 177
Char-downcase 178
Char-equalp 178
Char-greaterp 178
Char-int 178
Char-lessp 178
Char-not-equalp 178
Char-not-greaterp 178
Char-not-lessp 178
Char-upcase 178

Char/=

178

Page 190

Char< 178

Char<= 178

Char= 178

Char> 178

Char>= 178
Character Functions 177
Characterp 166
Chorus 65, 125
Clarinet 42

Clarinet sound 11
Clarinet-all 42
Clarinet-freq 42
Class 157

Classclass 157
Clean-up 171

Clip 27,53,64
Clipping repair 124
Clock 89

Clock command 89
Close 180
Co-termination 63
Code-char 177

Comb filter 50
Combination 57
Command Loop 151
Commas 87
Comment 79
Compose 64
Compress 124
Compress-map 124
Compressor 39
Concatenate strings 176
Cond 167

Configure nyquist 1
Congen 50

Cons 162

Console, XLISP 184
Consp 166

Const 41

Constant function 41
Continue 172
Continuous-control-warp 56
Continuous-sound-warp 56
Contour generator 50
Control 41

Control change 88
Control characters, XLISP 151
Control Constructs 167
Control-srate-abs 56
Control-warp 43
Convert soundto array 38
Convolution 51
Copier pattern 102
Cos 174

Cue 41

Cue-file 41
Current-path 96

Cxxr 162

Cxxxr 162

Cxxxxr 162

Cycle pattern 100

Data Types 152

Db-average 124

Db-to-linear 39

DBO 9

DB1 9

DB10 9

Debugging 38, 62, 95, 171, 172
Decf 96

Decrement 96

Default durations 83
Default 84

Default samplerate 17
Default sound file directory 58
Default time 80

Defining Behaviors 16
Defmacro 160

Defun 160

Delay 51

Delay, variable 65

Delete 164

Delete-if 165

Delete-if-not 165

Demos, bell sound 10
Demos, distortion 52
Demos, drum sound 10
Demos, fft 77

Demos, FM 30

Demos, FM synthesis 11
Demos, formants 10
Demos, gong sound 10
Demos, Ipc 93

Demos, midi 79

Demos, piano 123

Demos, pitch change 65
Demos, rhythmic pattern 11
Demos, ring modulation 8
Demos, sample-by-sample 11
Demos, scratch tutorial 30
Demos, Shepard tones 52
Demos, spectral analysis of achord 10
Demos, voice synthesis 51
Demos, wind sound 31
Derivative 45

Describe 120

Destructive List Functions 164
Developing code 95

Diff 58

Difference 121
Difference of sounds 58
Digit-char 178

Digit-char-p 177

Directory listing 180
Directory, default sound file 58
Distortion tutorial 52
Distributions, probability 105
Division 54

Do 169

Do* 169

Dolby Pro-Logic 128

Dolby Surround 127

Dolist 169

Doppler effect 128

Dot 81

Dotimes 170

Dotted durations 9

Dribble 183

Drum sound 10
DSPinLisp 11

Dtmf 127

Dtmf-tone 127

Dubugging 65

Duration 79, 81

Duration notation 9
Duration of another sound 63
DX7 82

Dynamic markings 82

Echo 51

NYQUIST MANUAL

Echoenabled 184
Effect, chorus 125
Effect, flange 125
Effect, reverberation 127
Effect, stereo 127
Effect, stereo pan 128
Effect, swap channels 128
Effect, widen 127
Effects, phaser 125
Elghth note 9, 81
Emacs, using Nyquist with 184
End command 91
Endian 184
Endlesstones 10

Endp 165

Env 7,41

Env-note 7

Envelope 7

Envelope follower 39, 65
Envelope generator 50
Envelopes 7
Environment 13

Eq 167

Eg-band 52
Eqg-highshelf 52
Eg-lowshelf 52

Eql 167

Equal 167

Equalization 52, 125
Error 171

Error Handling 171
Errors iii

Errset 172

Estimate frequency 54
Eva 158

Eval pattern 103
Evalhook 172
Evaluation functions 158
Evaluator 152

Evenp 167

Event-dur 115
Event-end 116
Event-expression 115
Event-get-attr 116
Event-has-attr 116
Event-set-attr 116
Event-set-dur 115
Event-set-expression 115
Event-set-time 115
Event-time 115
Exclamation point 79
Exit 184

Exp 174

Exp-dec 42

Expand 183

Exponent 97
Exponential 53
Exponential distribution 105
Exponential envelope 42
Expr-get-attr 116
Expr-has-attr 116
Expr-set-attr 116
Expression pattern 103
Expt 174

Extending Xlisp 145
Extract 56

F (Adagio dynamic) 82
F (Adagio Flat) 80
Fast fourier transform tutorial 77

INDEX

Fboundp 166
Feedback-delay 51
Feel factor 119

FF (Adagio dynamic) 82
FFF (Adagio dynamic) 82
Fft 77

Fft tutorial 77

File1/O Functions 180, 185
Filep 166

Filter example 31

Find string 175

FIR filter 51

First 162

First derivative 45
Flange effect 125

Flat 80

Flatc 179

Flatsize 179

Flet 168

Float 172

Floatp 166

Flutesound 11

FM synthesis 30

Fmifo 42

Fmosc 46

Follow 39

Follower 65
Force-srate 42

Format 179

Fourth 162

Frequency analysis 54
Frequency Modulation 28
Full path name 96
Funcall 158

Function 158

Fundamenal frequency estimation 54

Gain 124

Gate 39, 66

Gaussian distribution 108
Gc 183

Ged 173

GENO5 49

Gensym 160

Geometric distribution 109
Get 161

Get char 181
Get-duration 40
Get-lambda-expression 159
Get-loud 40
Get-output-stream-list 182
Get-output-stream-string 182
Get-slider-value 63
Get-sustain 40
Get-temp-path 180
Get-transpose 40
Get-warp 40

Global Variables 75

Go 170

Gong sounds 10

Granular synthesis 126
Graphical equalizer 125
Grindef 96

H (Adagio Half note) 81
H 9

Half note 9,81

Hash 160

Hd 9

Header fileformat 146

Heap pattern 102
High-passfilter 51
Highpass2 52
Highpass4 53
Highpass6 53
Highpass8 53

Hp 51

Ht 9

Hyperbolic cosine distribution 107

Hz-to-step 39
Hzosc 46

| (Adagio elght note) 81
I 9

Id 9

If 168

Ifft 77

Incf 96

Increment 96

Info 183

Input from aFile 185
Input/Output Functions 179
Installation 1
Int-char 178
Integerp 166
Integrate 45

Intern 160
Interpolate 121
Intersection 121
Intgen 145

Inverse 66
Inverse fft 77

It 9

Jitter 119

K (Adagio control) 88
Karplus-Strong 46
Karplus-Strong synthesis 11
Keyword parameters 113

Labels 168

Lambda 159
LambdalLists 154

Last 162

Latency 41

Legato 56, 82

Length 163

Length pattern 103

Let 168

Let* 168

Lexica conventions 153
LF (Adagio dynamic) 82
Lf 9

LFF (Adagio dynamic) 82
Lff 9

LFFF (Adagio dynamic) 82
Lfff 9

Lfo 42

Libraries 123

Limit 53

Limiter 39

Line pattern 101

Linear distribution 105
Linear interpolation 121
Linear Prediction 93
Linear prediction tutorial 93
Linear-to-db 39
LispDSP 11

Lisp Include Files 148

List 162

List directory 180

List Functions 161

Listdir 180
Listing of lisp function 96
Listp 165

Littleendian 184

LMF (Adagio dynamic) 82
Lmf 9

LMP (Adagio dynamic) 82
Lmp 9

Load 183

Local-to-global 40

Log function 40

Logand 175

Logical-stop 35

Logior 175

Logistic distribution 107
Lognot 175

Logorithm 53

Logxor 175

Loop 169

Looping Constructs 169
Loud 56

Loudness 79, 82
Low-frequency oscillator 42
Low-passfilter 51, 70
Lower-case-p 177
Lowpass2 52

Lowpass4 52

Lowpass6 53

Lowpass8 53

LP (Adagio dynamic) 82
Lp 9,51

LPC 93

Lpc tutorial 93
Lpc-frame-err 93, 94
Lpc-frame-filter-coefs 93, 94
Lpc-frame-rmsl 93, 94
Lpc-frame-rms2 93, 94
LPP (Adagio dynamic) 82
Lpp 9

LPPP (Adagio dynamic) 82
Lppp 9

Lpreson 94

M (Adagio control) 88
Macroexpand 159
Macroexpand-1 159
Macrolet 168
Make-accumulate 102
Make-array 161
Make-copier 102
Make-cycle 100
Make-eval 103
Make-heap 102
Make-length 103
Make-line 101
Make-lpanal-iterator 93
Make-Ipc-file-iterator 93
Make-markov 104
Make-palindrome 101
Make-product 103
Make-random 101
Make-string-input-stream 182
Make-string-output-stream 182
Make-sum 103
Make-symbol 160
Make-window 104
Maketable 42

Page 191

Page 192

Manipulation of scores 115
Mapc 163

Mapcar 163

Mapl 164

Maplist 164

Markov analysis 105
Markov pattern 104
Markov-create-rules 105
Max 173

Maximum 53, 173
Maximum amplitude 27, 66
Maximum of two sounds 66
Member 162

Memory usage 38

MF (Adagio dynamic) 82
MiddleC 80

MIDI 79

MIDI Clock 89

MIDI file 119

MIDI program 83
Midi-show 127
Midi-show-file 127
Mikrokosmos 85

Min 173

Minimoog 129
Minimum 54, 173
Minusp 167

Mix 58

Mix to file 61

Mkwave 6

Modulation wheel 88
Modulo (rem) function 173
Mono to stereo 127
Moog 129

Moving average 64

MP (Adagio dynamic) 82
Mult 7,43, 58
Multichannel Sounds 36
Multiple band effects 126
Multiple commands 87
Multipletempi 89
Multiplication 67
Multiply signals 58

N (Adagio Next) 81
Natural 80

Natural log 53

Nband 125

Nband-range 125

Nconc 164

Nested Transformations 16
Next Adagio command 81
Next in pattern 99

Next pattern 99

Noise 54

Noise gate 66

Noise-gate 39
Normalization 27

Not 165

Not enough memory for normalization 27

Notch filter 51
Notch2 52

Note 6

Notelist 58
Nstring-downcase 176
Nstring-upcase 176
Nth 163

Nthedr 163

Null 165

Numberp 165

Ny:al 10

O (Adagio control) 88
Object 156

Object Class 156
Objectp 166

Objects 155

Octave specification 80
Oddp 167

Offset 119

Offset to asound 64
Omissions iii

Oneshot 67

Open 180

Open sound control 40, 141
Or 168

Osc 5,40, 45
Osc-note 54
Osc-pulse 46

Osc-saw 46

Osc-tri 46

Output samplestofile 59
Output to aFile 185
Overlap 56

Overwrite samples 61

P (Adagio dynamic) 82
P (Adagio Pitch) 80
Palindrome pattern 101
Pan 43,127

Pan, stereo 128
Parameters, keyword 113
Params-scale 121
Params-transpose 121
Partial 46

Path, current 96
Pattern, eval 103
Pattern, length 103
Pattern, window 104
Pattern, accumulate 102
Pattern, copier 102
Pattern, cycle 100
Pattern, expression 103
Pattern, heap 102
Pattern, line 101
Pattern, markov 104
Pattern, palindrome 101
Pattern, product 103
Pattern, random 101
Pattern, sum 103
Patternp 121

Peak amplitude 27
Peak, maximum amplitude 66
Peck 184

Peek-char 181

Period estimation 54
Phaser 125

Physical model 11
Piano synthesizer 123
Piano synthesizer tutorial 123
Piano-midi 123
Piano-midi2file 123
Piano-note 123
Piano-note-2 123
Piece-wise 47
Piece-wiselinear 67
Pitch 79, 80

Pitch bend 88

Pitch detection 54
Pitch notation 10

NYQUIST MANUAL

Pitch shifting 65
Pl-center 128
Pl-doppler 128

Pl-left 128

Pl-pan2d 128
Pl-position 128
Pl-right 128

Play 5,58

Play inreverse 125
Play-file 26,59

Pluck 46

Plucked string 46
Plusp 167

Poisson distribution 109
Poke 184

Polyrhythm 89

Pop 96

Portamento switch 88
Power 97

PP (Adagio dynamic) 82
PPP (Adagio dynamic) 82
Pprint 179

Predicate Functions 165
Preset 83

Prinl1 179

Princ 179

Print 179

Print midi file 127
Probability distributions 105
Prod 43

Product pattern 103
Product 58

Profile 172

Profiling 157

Prog 170

Prog* 170

Progl 171

Prog2 171

Progn 171

Program 88

Program change 82
Progv 170

Property List Functions 161
Psetq 159

Pulse oscillator 46
Pulse-width modulation 46
Push 96

Putprop 161

Pwe 49

Pwe-list 49

Pwer 49

Pwer-list 49

Pwev 49

Pwev-list 49

Pwevr 49

Pwevr-list 50

Pwl 48

Pwl-list 48

Pwir 49

Pwir-list 49

Pwlv 49

Pwlv-list 49

Pwlvr 49

Pwlvr-list 49

Q (Adagio Quarter note) 81
Q9
Qd 9

Qt 9
Quantize 54

INDEX

Quarter note 9, 81
Quote 158

R (Adagio Rest) 82
Ramp 54

Random 96, 105, 173
Random pattern 101
Rate 80, 84

Read 179

Read directory 180
Read macros 154
Read samples 37
Read samples from file 60
Read samplesinreverse 125
Read-byte 182
Read-char 181
Read-float 181
Read-int 181
Read-line 182
Readtables 153
Real-random 96
Recip 54
Reciprocal 54
Registry 2

Rem 173
Remainder 173
Remove 163
Remove-if 163
Remove-if-not 163
Remprop 161
Replace file samples 61
Resample 43
Resampling 42, 65
Rescaling 27
Resolution 87
Reson 51

Rest 54, 162
Restore 183

Rests 82

Return 170
Return-from 170
Reverb 127
Reverse 162
Reverse, sound 125
Ring modulation 8
Risset 10

Rms 54, 64

Room 183

Rplaca 164

Rplacd 164
Rrandom 173

S (Adagio Sharp) 80
S (Adagio Sixteenth note) 81
S 9

S-abs 53

S-add-to 61

Sexp 53

Slog 53

Smax 27,53

Smin 27,54
S-overwrite 61

Splot 62

Sread 60

Srest 54

Sreverse 125

S-save 59

Ssort 53
Sampleinterpolation 67
Samplerate, forcing 42

Samplerates 17
Sampler 47

Samples 35, 38
Samples, reading 37
Sampling rate 40
Save 183

Save samplesto file 59
Save-lpc-file 93
Save-workspace 120
Saving Sound Files 26
Sawtooth oscillator 46
Sawtooth wave 6

Sax 43

Sax-all 43

Sax-freq 43

Scale 6,44

Scale-db 44
Scale-srate 44

Scan directory 180
Score 58

Score manipulation 115
Score, musical 7
Score-adjacent-events 118
Score-append 117
Score-apply 118
Score-filter 117
Score-filter-length 118
Score-filter-overlap 118
Score-gen 112, 114
Score-get-begin 118
Score-get-end 118
Score-indexof 118
Score-last-indexof 119
Score-merge 117

Score-must-have-begin-end 118

Score-play 118
Score-print 118
Score-randomize-start 119
Score-read-smf 119
Score-repeat 118
Score-scale 117
Score-select 117
Score-set-begin 117
Score-set-end 118
Score-shift 116
Score-sort 116
Score-sorted 116
Score-stretch 116
Score-stretch-to-length 118
Score-sustain 117
Score-transpose 117
Score-voice 117
Score-write-smf 119
Scratch sound 30

Sd 9

Search path 2

Second 162

Sections, Adagio 86
Semicolon, Adagio 87
Seq 57

Seqrep 57

Sequences 6, 79
Sequence_example.htm 7
Sequential behavior 14
Set 159

Set intersection 121
Set union 121
Set-control-srate 17, 40
Set-difference 121
Set-logical-stop 58

Set-pitch-names 40
Set-sound-srate 17, 40
Setdir 180

Setf 159

Seti commnad 92
Setq 159

Setup nyquist 1
Setup-console 184
Setv command 92
Sf-info 61

Shape 51

Sharp 80

Shepard tones 10, 52
Shift-time 44
Show midi file 127
Show-Ipc-data 93
Signal composition 64, 67
Signal multiplication 67
Signal-start 35
Signal-stop 35
Sim 6,57

Simrep 58
Simultaneous Behavior 15
Sin 173

Sine 46

Siosc 47

Sixteenth note 9, 81
Sixtyfourth note 81
Slope 45

Smooth 45
Snd-abs 64
Snd-add 64
Snd-alpoles 94
Snd-alpass 68
Snd-alpasscv 68
Snd-alpassvwv 68
Snd-amosc 71
Snd-areson 68
Snd-aresoncv 68
Snd-aresonvc 68
Snd-aresonvv 68
Snd-atone 69
Snd-atonev 69
Snd-avg 64
Snd-biquad 69
Snd-buzz 71
Snd-chase 69
Snd-clarinet 72
Snd-clarinet-all 72
Snd-clarinet-freq 72
Snd-clip 64
Snd-compose 64
Snd-congen 69
Snd-const 62
Snd-convolve 69
Snd-copy 65
Snd-coterm 63
Snd-delay 69
Snd-down 65
Snd-exp 65
Snd-extent 37
Snd-fetch 37
Snd-fetch-array 37
Snd-fft 77
Snd-flatten 37
Snd-fmosc 71
Snd-follow 65
Snd-from-array 36
Snd-fromarraystream 36
Snd-fromobject 37

Page 193

Page 194

Snd-gate 66
Snd-ifft 77
Snd-inverse 66
Snd-length 37
Snd-log 66
Snd-lpanal 94
Snd-lpreson 94
Snd-max 66
Snd-maxsamp 37
Snd-maxv 66
Snd-multiseq 72
Snd-normalize 66
Snd-offset 64
Snd-oneshot 67
Snd-osc 71
Snd-overwrite 63
Snd-partial 71
Snd-play 37
Snd-pluck 71
Snd-print 38
Snd-print-tree 38, 62
Snd-prod 67
Snd-pwl 67
Snd-quantize 67
Snd-read 62
Snd-recip 67
Snd-resample 67
Snd-resamplev 67
Snd-reson 69
Snd-resoncv 70
Snd-resonvc 70
Snd-resonvv 70
Snd-samples 38
Snd-save 63
Snd-sax 72
Snd-sax-al 72
Snd-sax-freq 72
Snd-scale 67
Snd-seq 72
Snd-set-latency 41
Snd-set-logical-stop 38
Snd-shape 67
Snd-sine 71
Snd-siosc 71
Snd-dlider-snd 64
Snd-sqrt 64
Snd-srate 38
Snd-sref 38
Snd-t0 38
Snd-tapf 65
Snd-tapv 65
Snd-time 38
Snd-tone 70
Snd-tonev 70
Snd-trigger 72
Snd-xform 67
Snd-yin 68
Snd-zero 63
Soften-clipping 124
Sort 165
Sound 41
accessing point 36
creating from array 36
Sound file directory default 58
Sound filei/o 26, 58
Sound fileinfo 61
Sound from Lisp data 37
Sound-off 59
Sound-on 59
Sound-srate-abs 56

Sound-warp 44
Soundfilename 61
Soundp 38

Sounds 35

Sounds vs. Behaviors 15
Spatidization 127
Special command 80
Spectral interpolation 47
Speed-dial 127
Splines 47

Sort 174

Square oscillator 46
Squareroot 53, 64
Srate 35

Sref 36

Sref-inverse 36

St 9

Stacatto 56

Staccato 82

Steck trace 172
Standard MIDI File 119
Stats 38

Step-to-hz 40

Stereo 127

Stereo pan 128

Stereo panning 43
Stereo-chorus 125
Sterecize 127

Stk clarinet 42

Stk sax 43

Stochastic functions 105
Strcat 176

Streamp 166

Stretch 8, 56
Stretching Sampled Sounds 25
String 175

String Functions 175
String Stream Functions 182
String synthesis 46
String-downcase 176
String-equalp 177
String-left-trim 175
String-lessp 177
String-not-equalp 177
String-not-greaterp 177
String-not-lessp 177
String-right-trim - 175
String-search 175
String-trim 175
String-upcase 176
String/= 176

String< 176

String<= 176

String= 176

String> 176

String>= 176

Stringp 166

Sublis 164

Subseq 176

Subset 121

Subsetp 121

Subst 164
Suggestions iii

Sum pattern 103

Sum 58

Surround Sound 128
Sustain 56
Sustain-abs 57

Swap channels 128
Symbol Functions 159

NYQUIST MANUAL

Symbol-function 160
Symbol-name 160
Symbol-plist 160
Symbol-value 160
Symbolp 165
Symbols 157
Synchronization 89
System Functions 183
SystemRoot 3

T (Adagio Triplet) 81
T 80

Table 51

Table memory 38
Tagbody 170

Tan 174

Tap 65

Tapped delay 53
Tapv 53

Temp file 180
Tempo 80, 83
Temporary files 180

Temporary sound files directory 58

Terpri 179

The Format Function 179
The Program Feature 170
Third 162

Thirtysecond note 81
Threshold 67

Throw 169

Time 79, 80, 83

Time Structure 57

Time units 87
Timed-seq 58

Tone 51

Top-level 171

Touch tone 127

Trace 171
Transformation environment 13
Transformations 13, 55
Transpose 57
Transpose-abs 57
Triangle oscillator 46
Trianglewave 6

Trigger 58

Trill 92

Triplet 81

Triplet durations 9
Truncate 172

Tuba 11

Tuning 40

Tutorial, FM 30
Type-of 183

U 81

Uniform random 96, 173
Union 121

Unless 168

Untrace 171
Unwind-protect 169
Upper-case-p 177

V (Adagio Voice) 83
Variabledelay 53, 65
Variable-resample function 65
Vector 161

Velocity 82

Vinal scratch 30

Voca sound 10

Voice 79,83

INDEX

Voice synthesis 51
Volume 88

W (Adagio Whole note) 81
w 9

Warble 30

Warp 57

Warp-abs 57
Waveforms 6
Waveshaping 51
Wavetables 6

wd 9

When 96, 168

While 96

Whole note 9, 81
Widen 127

Wind sound 31
Window initialization 184
Window pattern 104
Wind_tutorial.htm 31
Wood drum sound 11
Workspace 120

Write samplesto file 59
Write-byte 182
Write-char 181
Write-float 181
Write-int 181

Wt 9

X (Adagio control) 88
XLISP Command Loop 151
XLISP Data Types 152
XLISP evaluator 152

XLISP Lexica Conventions 153

XLISPPATH 2
Xmusic 99

Y (Adagio control) 88
Yin 54

Z (Adagio program) 83, 88
Zerop 167

A (Adagio sixtyfourth note) 81

~ (Adagio) 88

Page 195

Page 196 NYQUIST MANUAL

TABLE OF CONTENTS Pagei

Table of Contents

Preface i
1. Introduction and Overview 1
1.1. Installation 1
1.1.1. Unix Installation 1

1.1.2. Win32 Installation 2

1.1.2.1. What if Nyquist functions are undefined? 3

1.1.2.2. SystemRoot 3

1.1.3. MacOS 9 Ingtallation 4

1.1.4. MacOS X Installation 4

1.2. Helpful Hints 4
1.3. Examples 5
1.3.1. Waveforms 6

1.3.2. Wavetables 6

1.3.3. Sequences 6

1.3.4. Envelopes 7

1.3.5. Piece-wise Linear Functions 8

1.4. Predefined Constants 9
1.5. More Examples 10

2. Behavioral Abstraction 13
2.1. The Environment 13
2.2. Sequential Behavior 14
2.3. Simultaneous Behavior 15
2.4. Soundsvs. Behaviors 15
2.5. The At Transformation 16
2.6. Nested Transformations 16
2.7. Defining Behaviors 16
2.8. Sample Rates 17

3. Continuous Transformations and Time War ps 19
3.1. Simple Transformations 19
3.2. TimeWarps 20
3.3. Abstract Time Warps 20
3.4. Nested Transfor mations 22

4. More Examples 25
4.1. Stretching Sampled Sounds 25
4.2. Saving Sound Files 26
4.3. Memory Space and Normalization 27
4.4. Frequency Modulation 28
4.5. Building a Wavetable 30
4.6. Filter Examples 30
4.7.DSPin Lisp 31

5. Nyquist Functions 35
5.1. Sounds 35
5.1.1. What isa Sound? 35

5.1.2. Multichannel Sounds 36

5.1.3. Accessing and Creating Sound 36

5.1.4. Miscellaneous Functions 39

5.2. Behaviors 41
5.2.1. Using Previously Created Sounds 41

5.2.2. Sound Synthesis 41

5.2.2.1. Ogcillators 45

5.2.2.2. Piece-wise Approximations 47

Page ii NY QUIST MANUAL

5.2.2.3. Filter Behaviors 50

5.2.2.4. More Behaviors 53

5.3. Transformations 55
5.4. Combination and Time Structure 57
5.5. Sound File Input and Output 58
5.6. Low-level Functions 62
5.6.1. Creating Sounds 62

5.6.2. Signal Operations 64

5.6.3. Filters 68

5.6.4. Table-L ookup Oscillator Functions 70

5.6.5. Physical Model Functions 72

5.6.6. Sequence Support Functions 72

6. Nyquist Globals 75
7. Time/Frequency Transformation 77
8. MIDI, Adagio, and Sequences 79
8.1. Specifying Attributes 80
8.1.1. Time 80

8.1.2. Pitch 80

8.1.3. Duration 81

8.1.4. Next Time 81

8.1.5. Rest 82

8.1.6. Articulation 82

8.1.7. Loudness 82

8.1.8. Voice 83

8.1.9. Timbre (MIDI Program) 83

8.1.10. Tempo 83

8.1.11. Rate 84

8.2. Default Attributes 84
8.3. Examples 85
8.4. Advanced Features 87
8.4.1. Time Units and Resolution 87

8.4.2. Multiple Notes Per Line 87

8.4.3. Control Change Commands 88

8.4.4. M ultiple Tempi 89

8.4.5. MIDI Synchronization 89

8.4.6. System Exclusive M essages 90

8.4.7. Control Ramps 91

8.4.8. The !End Command 91

8.4.9. Calling C Routines 92

8.4.10. Setting C Variables 92

9. Linear Prediction Analysisand Synthesis 93
9.1. LPC Classes and Functions 93
9.2. Low-level LPC Functions 94
10. Developing and Debugging in Nyquist 95
10.1. Debugging 95
10.2. Useful Functions 96
11. Xmusic and Algorithmic Composition 99
11.1. Xmusic Basics 99
11.2. Pattern Classes 100
11.2.1. cycle 100

11.2.2. line 101

11.2.3. random 101

11.2.4. palindrome 101

TABLE OF CONTENTS Pageiii

11.2.5. heap 102
11.2.6. copier 102
11.2.7. accumulate 102
11.2.8. sum 103
11.2.9. product 103
11.2.10. eval 103
11.2.11. length 103
11.2.12. window 104
11.2.13. markov 104
11.3. Random Number Generators 105
11.4. Score Generation and Manipulation 110
11.4.1. Keyword Parameters 113
11.4.2. Using score-gen 114
11.4.3. Score Manipulation 115
11.4.4, Xmusic and Standard MIDI Files 119
11.4.5. Workspaces 120
11.4.6. Utility Functions 121

12. Nyquist Libraries 123
12.1. Piano Synthesizer 123
12.2. Dymanics Compression 123
12.3. Clipping Softener 124
12.4. Graphical Equalizer 125
12.5. Sound Reversal 125
12.6. Time Delay Functions 125
12.7. Multiple Band Effects 126
12.8. Granular Synthesis 126
12.9. MIDI Utilities 127
12.10. Reverberation 127
12.11. DTMF Encoding 127
12.12. Dolby Surround(R), Stereo and Spatialization Effects 127
12.13. Minimoog-inspired Synthesis 129
12.13.1. Oscillator Parameters 130
12.13.2. Noise Parameters 130
12.13.3. Filter Parameters 130
12.13.4. Amplitude Parameters 131
12.13.5. Other Parameters 131
12.13.6. Input Format 131
12.13.7. Sample Code/Sounds 132
Appendix |. Extending Nyquist 133
I.1. Trandlating Descriptionsto C Code 133
|.2. Rebuilding Nyquist 133
I.3. Accessing the New Function 133
I.4. Why Trandation? 134
I.5. Writing a .alg File 134
|.6. Attributes 135
|.7. Generated Names 139
|.8. Scalar Arguments 139
Appendix 1. Open Sound Control and Nyquist 141
I1.1. Sending Open Sound Control M essages 142
I1.2. The ser-to-osc Program 142
Appendix I11. Intgen 145
[11.0.1. Extending Xlisp 145
I11.1. Header fileformat 146

I11.2. Using #define’'d macros 147

Page iv NY QUIST MANUAL

I11.3. Lisp Include Files 148
I11.4. Example 148
I11.5. More Details 148
Appendix 1V. XLISP: An Object-oriented Lisp 149
IV.1. Introduction 150
IV.2. A Note From The Author 150
IV.3. XLISP Command L oop 151
IV.4. Special Characters 151
IV.5. Break Command L oop 151
IV.6. Data Types 152
IV.7. The Evaluator 152
IV.8. Lexical Conventions 153
IV.9. Readtables 153
IV.10. LambdaLists 154
IV.11. Objects 155
IV.12. The*'Object’’ Class 156
IV.13. The*'Class’ Class 157
1V.14. Profiling 157
I1V.15. Symbols 157
IV.16. Evaluation Functions 158
IV.17. Symbol Functions 159
IV.18. Property List Functions 161
I1V.19. Array Functions 161
IV.20. List Functions 161
IV.21. Destructive List Functions 164
IV.22. Predicate Functions 165
IV.23. Control Constructs 167
IV.24. L ooping Constructs 169
IV.25. The Program Feature 170
1V.26. Debugging and Error Handling 171
I1V.27. Arithmetic Functions 172
IV.28. Bitwise Logical Functions 175
IV.29. String Functions 175
IV.30. Character Functions 177
I1V.31. Input/Output Functions 179
I1V.32. The Format Function 179
IV.33. File /O Functions 180
IV.34. String Stream Functions 182
IV.35. System Functions 183
IV.36. File 1/0O Functions 185
V.36.1. Input from a File 185
IV.36.2. Output to a File 185
V.36.3. A Slightly More Complicated File Example 186

I ndex 189

LIST OF FIGURES

Figure 1:
Figure 2:

Figure 3:
Figure 4:

Figureb5:
Figure6:

Figure7:
Figure8:
Figure9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

List of Figures
An envelope gener ated by the env function.
Theresult of (warp4), intended to map 4 seconds of scor e timeinto 4 seconds of real

Page v

time. Thefunction extends beyond 4 seconds (the dashed lines) to make sure the function

iswell-defined at location (4, 4). Nyquist sounds are ordinarily open on theright.
When (warp4) is applied to (tone-seg-2), the note onsets and dur ations are war ped.
When (warp4) is applied to (tone-seg-3), the note onsets are war ped, but not the
duration, which remainsa constant 0.25 seconds. In thefast middle section, this causes
notesto overlap. Nyquist will sum (mix) them.
The shift-time function shifts a sound in time according to its shift argument.
Ramps generated by pwl and ramp functions. The pwl version rampstoward the
breakpoint (1, 1), but in order to ramp back to zero at breakpoint (1, 0), the function
never reaches an amplitude of 1. If used at the beginning of a seq construct, the next
sound will begin at time 1. The ramp version actually reaches breakpoint (1, 1); notice
that it is one samplelonger than the pwl version. If used in a sequence, the next sound
after ramp would start at time 1 + P, where P isthe sample period.
TheLinear Distribution, g=1.
The Exponential Distribution, delta = 1.
The Gamma Distribution, nu = 4.

The Bilateral Exponential Distribution.

The Cauchy Distribution, tau = 1.

TheHyperbolic Cosine Distribution.

The Logistic Distribution, alpha = 1, beta = 2.

TheArc Sine Distribution.

The Gauss-L aplace (Gaussian) Distribution, xmu = 0, sigma = 1.

The Beta Distribution, alpha = .5, beta = .25.

The Bernoulli Distribution, px1 =.75.

The Binomial Distribution,n =5, p=5.

The Geometric Distribution, p = .4.

The Poisson Distribution, delta = 3.

System diagram for Minimoog emulator.

106
106
107
107
108
108
109
109
110
110
111
111
112
112
129

