
Nyquist Reference Manual

Version 2.36

Copyright 2007 by Roger B. Dannenberg
5 March 2007

Carnegie Mellon University

School of Computer Science

Pittsburgh, PA 15213, U.S.A.

1

.

PREFACE Page iii

Preface
This manual is a guide for users of Nyquist, a language for composition and sound synthesis. Nyquist

grew out of a series of research projects, notably the languages Arctic and Canon. Along with Nyquist,
these languages promote a functional style of programming and incorporate time into the language
semantics.

Please help by noting any errors, omissions, or suggestions you may have. You can send your
suggestions to Dannenberg@CS.CMU.EDU (internet) via computer mail, or by campus mail to Roger
B. Dannenberg, School of Computer Science, or by ordinary mail to Roger B. Dannenberg, School of
Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213-3890, USA.

Nyquist is a successor to Fugue, a language originally implemented by Chris Fraley, and extended by
George Polly and Roger Dannenberg. Peter Velikonja and Dean Rubine were early users, and they
proved the value as well as discovered some early problems of the system. This led to Nyquist, a
reimplementation of Fugue by Roger Dannenberg with help from Joe Newcomer and Cliff Mercer. Ning
Hu ported Zheng (Geoffrey) Hua and Jim Beauchamp’s piano synthesizer to Nyquist and also built
NyqIDE, the Nyquist Interactive Development Environment for Windows. Dave Mowatt contributed the
original version of jNyqIDE, the cross-platform interactive development environment. Dominic Mazzoni
made a special version of Nyquist that runs within the Audacity audio editor, giving Nyquist a new
interface and introducing Nyquist to many new users.

Many others have since contributed to Nyquist. Chris Tchou and Morgan Green worked on the
Windows port. Eli Brandt contributed a number of filters and other synthesis functions. Pedro J. Morales,
Eduardo Reck Miranda, Ann Lewis, and Erich Neuwirth have all contributed nyquist examples found in
the demos folder of the Nyquist distribution. Philip Yam ported some synthesis functions from Perry
Cook and Gary Scavone’s STK to Nyquist. Dave Borel wrote the Dolby Pro-Logic encoding library and
Adam Hartman wrote stereo and spatialization effects. Stephen Mangiat wrote the MiniMoog emulator.
The Xmusic library, particularly the pattern specification, was inspired by Rick Taube’s Common Music.
The functions for generating probability distributions were implemented by Andreas Pfenning.

Many others have made contributions, offered suggestions, and found bugs. If you were expecting to
find your name here, I apologize for the omission, and please let me know.

I also wish to acknowledge support from CMU, Yamaha, and IBM for this work.

Page iv NYQUIST MANUAL

.

INTRODUCTION AND OVERVIEW Page 1

1. Introduction and Overview
Nyquist is a language for sound synthesis and music composition. Unlike score languages that tend to

deal only with events, or signal processing languages that tend to deal only with signals and synthesis,
Nyquist handles both in a single integrated system. Nyquist is also flexible and easy to use because it is
based on an interactive Lisp interpreter.

With Nyquist, you can design instruments by combining functions (much as you would using the
orchestra languages of Music V, cmusic, or Csound). You can call upon these instruments and generate a
sound just by typing a simple expression. You can combine simple expressions into complex ones to
create a whole composition.

Nyquist runs under any Unix environment, MacOS, Windows 95, and Windows NT, and it produces
sound files as output (or direct audio output under Windows). Under Unix, if you can play a sound file by
typing a command to a Unix shell, then you can get Nyquist to play sounds for you. Nyquist is currently
configured to run on an IBM RS6000 with an ACPA audio board, or a NeXT machine, using the built-in
sound system to play Nyquist output. Recent versions have also run on SGI, DEC pmax, Linux, and Sun
Sparc machines, and makefiles for these are included. Let me know if you have problems with any of
these machines.

To use Nyquist, you should have a basic knowledge of Lisp. An excellent text by Touretzky is
recommended [Touretzky 84]. Appendix IV is the reference manual for XLISP, of which Nyquist is a
superset.

1.1. Installation
Nyquist is a C program intended to run under various operating systems including Unix, MacOS, and

Windows.

1.1.1. Unix Installation
For Unix systems, Nyquist is distributed as a compressed tar file named nyquist2nn.zip, where nn

is the version number (e.g. v2.19 was nyquist219.zip). To install Nyquist, copy
nyquist2nn.zip to a fresh directory on your machine and type:

gunzip nyquist2nn.zip
ln -s sys/unix/linux/Makefile Makefile
setenv XLISPPATH ‘pwd‘/runtime:‘pwd‘/lib
make

The first line creates a nyquist directory and some subdirectories. The second line makes a link from
the top-level directory to the Makefile for your system. In place of linux in
sys/unix/linux/Makefile, you should substitute your system type. Current systems are next,
pmax, rs6k, sgi, linux, and sparc. The setenv command tells Nyquist where to search for lisp
files to be loaded when a file is not found in the current directory. The runtime directory should always
be on your XLISPPATH when you run Nyquist, so you may want to set XLISPPATH in your shell
startup file, e.g. .cshrc. Assuming the make completes successfully, you can run Nyquist as follows:

./ny

When you get the prompt, you may begin typing expressions such as the ones in the following
‘‘Examples’’ section.

Page 2 NYQUIST MANUAL

One you establish that Nyquist (ny) is working from the command line, you should try using jNyqIDE,
the Java-based Nyquist development environment. First, make jny executable (do this only once when
you install Nyquist):

chmod +x jny

Then try running jNyqIDE by typing:
./jny

If the jNyqIDE window does not appear, make sure you have Java installed (if not, you probably already
encountered errors when you ran make). You can also try recompiling the Java files:

cd jnyqide
javac *.java
cd ..

Note: With Linux and the Macintosh OS X, jNyqIDE defines the environment passed to Nyquist. If
you set XLISPPATH as shown above, it will be ignored under jNyqIDE. Instead, the XLISPPATH will
have the lib and runtime directories only. This does not apply to Windows because even though the
environment is there, the Windows version of Nyquist reads the XLISPPATH from the Registry.

You can specify additional directories for the search path by creating the file nyquist/xlisppath,
which should have colon-separated paths on a single line of text.

Note: Nyquist looks for the file init.lsp in the current directory. If you look in the init.lsp in
runtime, you will notice two things. First, init.lsp loads nyquist.lsp from the Nyquist
directory, and second, init.lsp loads system.lsp which in turn defines the macro play. You may
have to modify system.lsp to invoke the right programs on your machine.

1.1.2. Win32 Installation
The Win32 version of Nyquist is packaged in three versions: the source version and two runtime

versions. The source version is a superset of the runtime version intended for developers who want to
recompile Nyquist. The source version exists as a .zip file, so you need a utility like WinZip to unpack
them. The URL http://www.winzip.com/ has information on this product. Typically, the
contents of the zip file are extracted to the C:\nyquist directory, but you can put it anywhere you like.
You can then open the workspace file, nyquist.dsw, using Microsoft Visual C++. You can build and run
the command line and the NyqWin versions of Nyquist from within Visual C++.

The runtime versions contain everything you need to run Nyquist, including the executable, examples,
and documentation. Each runtime version is packaged as an executable installer program. I recommend
setupnyqiderun2xx.exe (‘‘2xx’’ refers to the current version number), a graphical interface
written in Java that runs nyquist.exe as a separate process. This IDE has a simple lisp editor built in.
Alternatively, you can install setupnyqwinrun2xx.exe, a different graphical interface written in
C++. Just copy the installer you want to your system and run it. Then find Nyquist in your Start menu to
run it. You may begin typing expressions such as the ones in the following ‘‘Examples’’ section.

Optional: Nyquist needs to know where to find the standard runtime files. The location of runtime files
must be stored in the Registry. The installers create a registry entry, but if you move Nyquist or deal with
different versions, you can edit the Registry manually as follows:

• Run the Registry editor. Under Windows NT, run
C:\WINNT\system32\regedt32.exe. Under Windows95, run

INTRODUCTION AND OVERVIEW Page 3

C:\WINDOWS\regedit.exe.

• Find and highlight the SOFTWARE key under HKEY_LOCAL_MACHINE.

• Choose Add key ... from the Edit menu, type CMU, and click the OK button.

• Highlight the new CMU key.

• Choose Add key ... from the Edit menu, type Nyquist, and click the OK button.
(Note that CMU and Nyquist are case sensitive.)

• Highlight the new Nyquist key.

• Choose Add value ... from the Edit menu, type XLISPPATH, and click the OK
button. (Under WinXP the menu item is Edit:New:String Value, after which you
need to select the new string name that appears in the right panel, select Edit:Rename, and
type XLISPPATH.)

• In the String Edit box (select the Edit:Modify menu item in WinXP), type a list of paths
you want Nyquist to search for lisp files. For example, if you installed Nyquist as
C:\nyquist, then type:

C:\nyquist\runtime,C:\nyquist\lib

The paths should be separated by a comma or semicolon and no space. The runtime path is
essential, and the lib path may become essential in a future release. You can also add paths
to personal libraries of Lisp and Nyquist code.

• Click the OK button of the string box and exit from the Registry Editor application.

1.1.2.1. What if Nyquist functions are undefined?
If you do not have administrative privileges for your machine, the installer may fail to set up the

Registry entry that Nyquist uses to find initialization files. In this case, Nyquist will run a lisp interpreter,
but many Nyquist functions will not be defined. If you can log in as administrator, do it and reinstall
Nyquist. If you do not have permission, you can still run Nyquist as follows:

Create a file named init.lsp in the same directory as Nyquist.exe (the default location is
C:\Program Files\Nyquist, but you may have installed it in some other location.) Put the
following text in init.lsp:

(setf *search-path* "C:/Program Files/Nyquist/runtime,C:/Program Files/Nyquist/lib")
(load "C:/Program Files/Nyquist/runtime/init.lsp")

Note: in the three places where you see C:/Program Files/Nyquist, insert the full path where
Nyquist is actually installed. Use forward slashes (/) rather than back slashes (\) to separate directories.
For example, if Nyquist is installed at D:\rbd\nyquist, then init.lsp should contain:

(setf *search-path* "D:/rbd/nyquist/runtime,D:/rbd/nyquist/lib")
(load "d:/rbd/nyquist/runtime/init.lsp")

The variable *search-path*, if defined, is used in place of the registry to determine search paths for
files.

1.1.2.2. SystemRoot
(Ignore this paragraph if you are not planning to use Open Sound Control under Windows.) If Nyquist

prints an error message and quits when you enable Open Sound Control (using osc-enable), check to
see if you have an environment variable SystemRoot, e.g. type set to a command prompt and look for
the value of SystemRoot. The normal value is C:\windows. If the value is something else, you

Page 4 NYQUIST MANUAL

should put the environment entry, for example:

SystemRoot="D:\windows"

into a file named systemroot (no extension). Put this file in your nyquist directory. When you run
jNyqIDE, it will look for this file and pass the contents as an environment variable to Nyquist. The
Nyquist process needs this to open a UDP socket, which is needed for Open Sound Control.

1.1.3. MacOS 9 Installation
The MacOS 9 version of Nyquist is no longer supported, but a old version still exists. The MacOS

version of Nyquist is packaged in two versions: the source version and the runtime version. The source
version is a superset of the runtime version. Both exist as self extracting archives, so you just need to
copy the archive file of your choice to your machine and double click on its icon. You can extract the
archive to any folder you like.

You will find Nyquist in the runtime folder. Double click on it and you should see a text window
with some information that Nyquist has started and has loaded some files. You may begin typing
expressions such as the ones in the following section.

On the Macintosh, Nyquist automatically creates a file "System:Preferences:XLisp
Preferences" with a default search path for files. You can edit this file to add new locations, although
this should not be necessary for most uses.

1.1.4. MacOS X Installation
The OS X version of Nyquist is very similar to the Linux version, but it is developed using Xcode,

Apple’s programming environment. With a little work, you can use the Linux installation instructions to
compile Nyquist, but it might be simpler to just open the Xcode project that is included in the Nyquist
sources.

You can also download a pre-compiled version of Nyquist for the Mac. Just download
nyqosx2xx.tgz to the desktop and open it to extract the folder <tt>nyqosx2xx</tt>. (Again, "2xx"
refers to the current version number, e.g. v2.31 would be named with "231".) Open the folder to find a
Mac Application named jNyqIDE and a directory named <tt>nyquist/doc</tt>. Documentation is in the
<tt>nyquist/doc</tt> directory.

The file <tt>jNyqIDE.app/Contents/Resources/Java/ny</tt> is the command line executable (if you
should need it). To run from the command line, you will need to set the XLISPPATH environment
variable as with Linux. On the topic of the XLISPPATH, note that this variable is set by jNyqIDE when
running with that application, overriding any other value. You can extend the search path by creating the
file xlisppath in the same directory as the nyquist executable ny. The xlisppath file should have
colon-separated paths on a single line of text.

1.2. Helpful Hints
Under Win95 and Win98, the console sometimes locks up. Activating another window and then

reactivating the Nyquist window should unlock the output. (We suggest you use JNyqIDE, the interactive
development environment rather than a console window.)

INTRODUCTION AND OVERVIEW Page 5

You can cut and paste text into Nyquist, but for serious work, you will want to use the Lisp load
command. To save even more time, write a function to load your working file, e.g. (defun l ()
(load "myfile.lsp")). Then you can type (l) to (re)load your file.

Under Windows, if you encounter an error while loading a file, the file is left open, and you may not be
able to overwrite the file with a correction. To close the file, type (top) to exit the debugger and
resume at the top level of the interpreter. You may need to type (gc) to force a garbage collection. This
will free and close the file. Now you can modify the file with your text editor.

The Emacs editor is free GNU software and will help you balance parentheses if you use Lisp mode.
Also, the NyqIDE and jNyqIDE versions have built-in lisp editors. If your editor does not help you
balance parentheses, you may find yourself counting parens and searching for unbalanced expressions. If
you are desparate, type (file-sexprs) and type the lisp file name at the prompt. This function will
read and print expressions from the file, reporting an error when an extra paren or end-of-file is reached
unexpectedly. By looking at the last expression printed, you can at least tell where the unbalanced
expression starts. Alternatively, try the verbose mode of the load command.

1.3. Examples
We will begin with some simple Nyquist programs. Detailed explanations of the functions used in

these examples will be presented in later chapters, so at this point, you should just read these examples to
get a sense of how Nyquist is used and what it can do. The details will come later. Most of these
examples can be found in the file nyquist/sndtest/tutorial.lsp.

Our first example makes and plays a sound:

;; Making a sound.
(play (osc 60)) ; generate a loud sine wave

This example is about the simplest way to create a sound with Nyquist. The osc function generates a
sound using a table-lookup oscillator. There are a number of optional parameters, but the default is to
compute a sinusoid with an amplitude of 1.0. The parameter 60 designates a pitch of middle C. (Pitch
specification will be described in greater detail later.) The result of the osc function is a sound. To hear
a sound, you must use the play function, which under Unix writes the sound as a 16-bit sound file and
runs a Unix program that plays the file through the machine’s D/A converters. On the Macintosh, you
have to explicitly play the file from another program, e.g. SoundApp, which is included in the Macintosh
release. Under Windows, Nyquist outputs audio directly. It also writes a soundfile in case the computation
cannot keep up with real time. You can then (re)play the file by typing:

(r)

This (r) command is a general command to ‘‘replay’’ the last thing written by play.

Note: when Nyquist plays a sound, it scales the signal by 215-1 and (by default) converts to a 16-bit
integer format. A signal like (osc 60), which ranges from +1 to -1, will play as a full-scale 16-bit
audio signal. Signals are not normalized to full-scale, however, so an amplitude in excess of 1 will be
clipped. See Section 4.3 for information about normalization.

Page 6 NYQUIST MANUAL

1.3.1. Waveforms
Our next example will be presented in several steps. The goal is to create a sound using a wavetable

consisting of several harmonics as opposed to a simple sinusoid. In order to build a table, we will use a
function that computes a single harmonic and add harmonics to form a wavetable. An oscillator will be
used to compute the harmonics.

The function mkwave calls upon build-harmonic to generate a total of four harmonics with
amplitudes 1.0, 0.5, 0.25, and 0.12. These are scaled (using scale) and added (using sim) to create a
waveform which is bound temporarily to *table*.

A complete Nyquist waveform is a list consisting of a sound, a pitch, and T, indicating a periodic
waveform. The pitch gives the nominal pitch of the sound. (This is implicit in a single cycle wave table,
but a sampled sound may have many periods of the fundamental.) Pitch is expressed in half-steps, where
middle C is 60 steps, as in MIDI pitch numbers. The list of sound, pitch, and T is formed in the last line
of mkwave: since build-harmonic computes signals with a duration of one second, the fundamental
is 1 Hz, and the hz-to-step function converts to pitch (in units of steps) as required.

(defun mkwave ()
(setf *table* (sim (scale 0.5 (build-harmonic 1.0 2048))

(scale 0.25 (build-harmonic 2.0 2048))
(scale 0.125 (build-harmonic 3.0 2048))
(scale 0.062 (build-harmonic 4.0 2048))))

(setf *table* (list *table* (hz-to-step 1) T)))

Now that we have defined a function, the last step of this example is to build the wave. The following
code calls mkwave the first time the code is executed (loaded from a file). The second time, the variable
mkwave will be true, so mkwave will not be invoked:

(cond ((not (boundp ’*mkwave*))
(mkwave)
(setf *mkwave* t)))

1.3.2. Wavetables
When Nyquist starts, several waveforms are created and stored in global variables for convenience.

They are: *sine-table*, *saw-table*, and *tri-table*, implementing sinusoid, sawtooth,
and triangle waves, respectively. The variable *table* is initialized to *sine-table*, and it is
table that forms the default wave table for many Nyquist oscillator behaviors. If you want a proper,
band-limited waveform, you should construct it yourself, but if you do not understand this sentence
and/or you do not mind a bit of aliasing, give *saw-table* and *tri-table* a try.

Note that in Lisp, global variables often start and end with asterisks (*). These are not special syntax,
they just happen to be legal characters for names, and their use is purely a convention.

1.3.3. Sequences
Finally, we define note to use the waveform, and play several notes in a simple score:

INTRODUCTION AND OVERVIEW Page 7

(defun note (pitch dur)
(osc pitch dur *table*))

(play (seq (note c4 i)
(note d4 i)
(note f4 i)
(note g4 i)
(note d4 q)))

Here, note is defined to take pitch and duration as parameters; it calls osc to do the work of generating
a waveform, using *table* as a wave table.

The seq function is used to invoke a sequence of behaviors. Each note is started at the time the
previous note finishes. The parameters to note are predefined in Nyquist: c4 is middle C, i (for eIghth
note) is 0.5, and q (for Quarter note) is 1.0. See Section 1.4 for a complete description. The result is the
sum of all the computed sounds.

Sequences can also be constructed using the at transformation to specify time offsets. See
sequence_example.htmdemos, sequence for more examples and explanation.

1.3.4. Envelopes
The next example will illustrate the use of envelopes. In Nyquist, envelopes are just ordinary sounds

(although they normally have a low sample rate). An envelope is applied to another sound by
multiplication using the mult function. The code shows the definition of env-note, defined in terms
of the note function in the previous example. In env-note, a 4-phase envelope is generated using the
env function, which is illustrated in Figure 1.

t1 t2 t4

L1

L2
L3

dur

(env t1 t2 t4 l1 l2 l3 dur)

Figure 1: An envelope generated by the env function.

Page 8 NYQUIST MANUAL

; env-note produces an enveloped note. The duration
; defaults to 1.0, but stretch can be used to change
; the duration.
;
(defun env-note (p)
(mult (note p 1.0)

(env 0.05 0.1 0.5 1.0 0.5 0.4)))

; try it out:
;
(play (env-note c4))

While this example shows a smooth envelope multiplied by an audio signal, you can also use mult to
multiply to audio signals to achieve what is often called ring modulation. See the code and description in
demos/scratch_tutorial.htm for an interesting use of ring modulation to create ‘‘scratch’’
sounds.

In the next example, stretch is used to modify durations:

; now use stretch to play different durations
;
(play

(seq (stretch 0.25
(seq (env-note c4)

(env-note d4)))
(stretch 0.5

(seq (env-note f4)
(env-note g4)))

(env-note c4)))

In addition to stretch, there are a number of transformations supported by Nyquist, and
transformations of abstract behaviors is perhaps the fundamental idea behind Nyquist. Chapter 2 is
devoted to explaining this concept, and further elaboration can be found elsewhere [Dannenberg 89].

1.3.5. Piece-wise Linear Functions
It is often convenient to construct signals in Nyquist using a list of (time, value) breakpoints which are

linearly interpolated to form a smooth signal. Envelopes created by env are a special case of the more
general piece-wise linear functions created by pwl. Since pwl is used in some examples later on, we
will take a look at pwl now. The pwl function takes a list of parameters which denote (time, value)
pairs. There is an implicit initial (time, value) pair of (0, 0), and an implicit final value of 0. There
should always be an odd number of parameters, since the final time is not implicit. Here are some
examples:

INTRODUCTION AND OVERVIEW Page 9

; symetric rise to 10 (at time 1) and fall back to 0 (at time 2):
;
(pwl 1 10 2)

; a square pulse of height 10 and duration 5.
; Note that the first pair (0, 10) overrides the default initial
; point of (0, 0). Also, there are two points specified at time 5:
; (5, 10) and (5, 0). (The last 0 is implicit). The conflict is
; automatically resolved by pushing the (5, 10) breakpoint back to
; the previous sample, so the actual time will be 5 - 1/sr, where
; sr is the sample rate.
;
(pwl 0 10 5 10 5)

; a constant function with the value zero over the time interval
; 0 to 3.5. This is a very degenerate form of pwl. Recall that there
; is an implicit initial point at (0, 0) and a final implicit value of
; 0, so this is really specifying two breakpoints: (0, 0) and (3.5, 0):
;
(pwl 3.5)

; a linear ramp from 0 to 10 and duration 1.
; Note the ramp returns to zero at time 1. As with the square pulse
; above, the breakpoint (1, 10) is pushed back to the previous sample.
;
(pwl 1 10 1)

; If you really want a linear ramp to reach its final value at the
; specified time, you need to make a signal that is one sample longer.
; The RAMP function does this:
;
(ramp 10) ; ramp from 0 to 10 with duration 1 + one sample period
;
; RAMP is based on PWL; it is defined in nyquist.lsp.
;

1.4. Predefined Constants
For convenience and readability, Nyquist pre-defines some constants, mostly based on the notation of

the Adagio score language, as follows:

• Dynamics Note: these dynamics values are subject to change.

lppp = -12.0 (dB)
lpp = -9.0
lp = -6.0
lmp = -3.0
lmf = 3.0
lf = 6.0
lff = 9.0
lfff = 12.0
dB0 = 1.00
dB1 = 1.122
dB10 = 3.1623

• Durations

Page 10 NYQUIST MANUAL

s = Sixteenth = 0.25
i = eIghth = 0.5
q = Quarter = 1.0
h = Half = 2.0
w = Whole = 4.0
sd, id, qd, hd, wd = dotted durations.
st, it, qt, ht, wt = triplet durations.

• PitchesPitches are based on an A4 of 440Hz. To achieve a different tuning, set
A4-Hertz to the desired frequency for A4, and call (set-pitch-names). This will
recompute the names listed below with a different tuning. In all cases, the pitch value 69.0
corresponds exactly to 440Hz, but fractional values are allowed, so for example, if you set
A4-Hertz to 444 (Hz), then the symbol A4 will be bound to 69.1567, and C4 (middle
C), which is normally 60.0, will be 60.1567.

c0 = 12.0
cs0, df0 = 13.0
d0 = 14.0
ds0, ef0 = 15.0
e0 = 16.0
f0 = 17.0
fs0, gf0 = 18.0
g0 = 19.0
gs0, af0 = 20.0
a0 = 21.0
as0, bf0 = 22.0
b0 = 23.0
c1 ... b1 = 24.0 ... 35.0
c2 ... b2 = 36.0 ... 47.0
c3 ... b3 = 48.0 ... 59.0
c4 ... b4 = 60.0 ... 71.0
c5 ... b5 = 72.0 ... 83.0
c6 ... b6 = 84.0 ... 95.0
c7 ... b7 = 96.0 ... 107.0
c8 ... b8 = 108.0 ... 119.0

• Miscellaneous)

ny:all = ‘‘all the samples’’ (i.e. a big number) = 1000000000

1.5. More Examples
More examples can be found in the directory demos, part of the standard Nyquist release. In this

directory, you will find the following and more:

• Gong sounds by additive synthesis(demos/pmorales/b1.lsp and
demos/mateos/gong.lsp

• Risset’s spectral analysis of a chord (demos/pmorales/b2.lsp)

• Bell sounds (demos/pmorales/b3.lsp, demos/pmorales/e2.lsp,
demos/pmorales/partial.lsp, and demos/mateos/bell.lsp)

• Drum sounds by Risset (demos/pmorales/b8.lsp

• Shepard tones (demos/shepard.lsp and demos/pmorales/b9.lsp)

• Random signals (demos/pmorales/c1.lsp)

INTRODUCTION AND OVERVIEW Page 11

• Buzz with formant filters (demos/pmorales/buzz.lsp

• Computing samples directly in Lisp (using Karplus-Strong and physical modelling as
examples) (demos/pmorales/d1.lsp

• FM Synthesis examples, including bell, wood drum, brass sounds, tuba sound
(demos/mateos/tuba.lsp and clarinet sounds (demos/pmorales/e2.lsp

• Rhythmic patterns (demos/rhythm_tutorial.htm

Page 12 NYQUIST MANUAL

BEHAVIORAL ABSTRACTION Page 13

2. Behavioral Abstraction
In Nyquist, all functions are subject to transformations. You can think of transformations as additional

parameters to every function, and functions are free to use these additional parameters in any way. The
set of transformation parameters is captured in what is referred to as the transformation environment.
(Note that the term environment is heavily overloaded in computer science. This is yet another usage of
the term.)

Behavioral abstraction is the ability of functions to adapt their behavior to the transformation
environment. This environment may contain certain abstract notions, such as loudness, stretching a sound
in time, etc. These notions will mean different things to different functions. For example, an oscillator
should produce more periods of oscillation in order to stretch its output. An envelope, on the other hand,
might only change the duration of the sustain portion of the envelope in order to stretch. Stretching a
sample could mean resampling it to change its duration by the appropriate amount.

Thus, transformations in Nyquist are not simply operations on signals. For example, if I want to stretch
a note, it does not make sense to compute the note first and then stretch the signal. Doing so would cause
a drop in the pitch. Instead, a transformation modifies the transformation environment in which the note
is computed. Think of transformations as making requests to functions. It is up to the function to carry
out the request. Since the function is always in complete control, it is possible to perform transformations
with ‘‘intelligence;’’ that is, the function can perform an appropriate transformation, such as maintaining
the desired pitch and stretching only phase 3 of an envelope to obtain a longer note.

2.1. The Environment
The transformation environment consists of a set of special Lisp variables. These variables should not

be read directly and should never be set directly by the programmer. Instead, there are functions to read
them, and they are automatically set and restored by transformation operators, which will be described
below.

The transformation environment consists of the following elements. Although each element has a
‘‘standard interpretation,’’ the designer of an instrument or the composer of a complex behavior is free to
interpret the environment in any way. For example, a change in *loud* may change timbre more than
amplitude, and *transpose* may be ignored by percussion instruments:

warp Time transformation, including time shift, time stretch, and continuous time warp.
The value of *warp* is interpreted as a function from logical (local score) time to
physical (global real) time. Do not access *warp* directly. Instead, use
(local-to-global t) to convert from a logical (local) time to physical (global)
time. Most often, you will call (local-to-global 0). Several transformation
operators operate on *warp*, including at, stretch, and warp.

loud Loudness, expressed in decibels. The default (nominal) loudness is 0.0 dB (no
change). Do not access *loud* directly. Instead, use (get-loud) to get the
current value of *loud* and either loud or loud-abs to modify it.

transpose Pitch transposition, expressed in semitones. (Default: 0.0). Do not access
transpose directly. Instead, use (get-transpose) to get the current value
of *transpose* and either transpose or transpose-abs to modify it.

sustain The ‘‘sustain,’’ ‘‘articulation,’’ ‘‘duty factor,’’ or amount by which to separate or
overlap sequential notes. For example, staccato might be expressed with a
sustain of 0.5, while very legato playing might be expressed with a

Page 14 NYQUIST MANUAL

sustain of 1.2. Specifically, *sustain* stretches the duration of notes
(sustain) without affecting the inter-onset time (the rhythm). Do not access
sustain directly. Instead, use (get-sustain) to get the current value of
sustain and either sustain or sustain-abs to modify it.

start Start time of a clipping region. Note: unlike the previous elements of the
environment, *start* has a precise interpretation: no sound should be generated
before *start*. This is implemented in all the low-level sound functions, so it can
generally be ignored. You can read *start* directly, but use extract or
extract-abs to modify it. Note 2: Due to some internal confusion between the
specified starting time and the actual starting time of a signal after clipping,
start is not fully implemented.

stop Stop time of clipping region. By analogy to *start*, no sound should be generated
after this time. *start* and *stop* allow a composer to preview a small section
of a work without computing it from beginning to end. You can read *stop*
directly, but use extract or extract-abs to modify it. Note: Due to some
internal confusion between the specified starting time and the actual starting time of a
signal after clipping, *stop* is not fully implemented.

control-srate
Sample rate of control signals. This environment element provides the default sample
rate for control signals. There is no formal distinction between a control signal and an
audio signal. You can read *control-srate* directly, but use
control-srate or control-srate-abs to modify it.

sound-srate Sample rate of musical sounds. This environment element provides the default
sample rate for musical sounds. You can read *sound-srate* directly, but use
sound-srate or sound-srate-abs to modify it.

2.2. Sequential Behavior
Previous examples have shown the use of seq, the sequential behavior operator. We can now explain

seq in terms of transformations. Consider the simple expression:
(play (seq (note c4 q) (note d4 i)))

The idea is to create the first note at time 0, and to start the next note when the first one finishes. This is
all accomplished by manipulating the environment. In particular, *warp* is modified so that what is
locally time 0 for the second note is transformed, or warped, to the logical stop time of the first note.

One way to understand this in detail is to imagine how it might be executed: first, *warp* is set to an
initial value that has no effect on time, and (note c4 q) is evaluated. A sound is returned and saved.
The sound has an ending time, which in this case will be 1.0 because the duration q is 1.0. This ending
time, 1.0, is used to construct a new *warp* that has the effect of shifting time by 1.0. The second note
is evaluated, and will start at time 1. The sound that is returned is now added to the first sound to form a
composite sound, whose duration will be 2.0. *warp* is restored to its initial value.

Notice that the semantics of seq can be expressed in terms of transformations. To generalize, the
operational rule for seq is: evaluate the first behavior according to the current *warp*. Evaluate each
successive behavior with *warp* modified to shift the new note’s starting time to the ending time of the
previous behavior. Restore *warp* to its original value and return a sound which is the sum of the
results.

In the Nyquist implementation, audio samples are only computed when they are needed, and the second

BEHAVIORAL ABSTRACTION Page 15

part of the seq is not evaluated until the ending time (called the logical stop time) of the first part. It is
still the case that when the second part is evaluated, it will see *warp* bound to the ending time of the
first part.

A language detail: Even though Nyquist defers evaluation of the second part of the seq, the expression
can reference variables according to ordinary Lisp scope rules. This is because the seq captures the
expression in a closure, which retains all of the variable bindings.

2.3. Simultaneous Behavior
Another operator is sim, which invokes multiple behaviors at the same time. For example,

(play (scale 0.5 (sim (note c4 q) (note d4 i))))

will play both notes starting at the same time.

The operational rule for sim is: evaluate each behavior at the current *warp* and return the result.
The following section illustrates two concepts: first, a sound is not a behavior, and second, the sim
operator and and the at transformation can be used to place sounds in time.

2.4. Sounds vs. Behaviors
The following example loads a sound from a file in the current directory and stores it in a-snd:

; load a sound
;
(setf a-snd (s-read "./demo-snd.snd" :srate 22050.0))

; play it
;
(play a-snd)

One might then be tempted to write the following:

(seq a-snd a-snd) ;WRONG!

Why is this wrong? Recall that seq works by modifying *warp*, not by operating on sounds. So, seq
will proceed by evaluating a-snd with different values of *warp*. However, the result of evaluating
a-snd (a Lisp variable) is always the same sound, regardless of the environment; in this case, the second
a-snd should start at time 0.0, just like the first. In this case, after the first sound ends, Nyquist is
unable to ‘‘back up’’ to time zero, so in fact, this will play two sounds in sequence, but that is a result of
an implementation detail rather than correct program execution. In fact, a future version of Nyquist might
(correctly) stop and report an error when it detects that the second sound in the sequence has a real start
time that is before the requested one.

How then do we obtain a sequence of two sounds properly? What we really need here is a behavior
that transforms a given sound according to the current transformation environment. That job is performed
by cue. For example, the following will behave as expected, producing a sequence of two sounds:

(seq (cue a-snd) (cue a-snd))

This example is correct because the second expression will shift the sound stored in a-snd to start at the
end time of the first expression.

The lesson here is very important: sounds are not behaviors! Behaviors are computations that generate
sounds according to the transformation environment. Once a sound has been generated, it can be stored,

Page 16 NYQUIST MANUAL

copied, added to other sounds, and used in many other operations, but sounds are not subject to
transformations. To transform a sound, use cue, sound, or control. The differences between these
operations are discussed later. For now, here is a ‘‘cue sheet’’ style score that plays 4 copies of a-snd:

; use sim and at to place sounds in time
;
(play (sim (at 0.0 (cue a-snd))

(at 0.7 (cue a-snd))
(at 1.0 (cue a-snd))
(at 1.2 (cue a-snd))))

2.5. The At Transformation
The second concept introduced by the previous example is the at operation, which shifts the *warp*

component of the environment. For example,
(at 0.7 (cue a-snd))

can be explained operationally as follows: modify *warp* by shifting it by 0.7 and evaluate (cue
a-snd). Return the resulting sound after restoring *warp* to its original value. Notice how at is used
inside a sim construct to locate copies of a-snd in time. This is the standard way to represent a note-list
or a cue-sheet in Nyquist.

This also explains why sounds need to be cue’d in order to be shifted in time or arranged in sequence.
If this were not the case, then sim would take all of its parameters (a set of sounds) and line them up to
start at the same time. But (at 0.7 (cue a-snd)) is just a sound, so sim would ‘‘undo’’ the
effect of at, making all of the sounds in the previous example start simultaneously, in spite of the at.
Since sim respects the intrinsic starting times of sounds, a special operation, cue, is needed to create a
new sound with a new starting time.

2.6. Nested Transformations
Transformations can be combined using nested expressions. For example,

(sim (cue a-snd)
(loud 6.0 (at 3.0 (cue a-snd))))

scales the amplitude as well as shifts the second entrance of a-snd.

Transformations can also be applied to groups of behaviors:
(loud 6.0 (sim (at 0.0 (cue a-snd))

(at 0.7 (cue a-snd))))

2.7. Defining Behaviors
Groups of behaviors can be named using defun (we already saw this in the definitions of note and

note-env). Here is another example of a behavior definition and its use. The definition has one
parameter:

BEHAVIORAL ABSTRACTION Page 17

(defun snds (dly)
(sim (at 0.0 (cue a-snd))

(at 0.7 (cue a-snd))
(at 1.0 (cue a-snd))
(at (+ 1.2 dly) (cue a-snd))))

(play (snds 0.1))
(play (loud 0.25 (stretch 0.9 (snds 0.3))))

In the last line, snds is transformed: the transformations will apply to the cue behaviors within snds.
The loud transformation will scale the sounds by 0.25, and stretch will apply to the shift (at)
amounts 0.0, 0.7, 1.0, and (+ 1.2 dly). The sounds themselves (copies of a-snd) will not be
stretched because cue never stretches sounds.

Section 5.3 describes the full set of transformations.

2.8. Sample Rates
The global environment contains *sound-srate* and *control-srate*, which determine the

sample rates of sounds and control signals. These can be overridden at any point by the transformations
sound-srate-abs and control-srate-abs; for example,

(sound-srate-abs 44100.0 (osc c4))

will compute a tone using a 44.1Khz sample rate.

As with other components of the environment, you should never change *sound-srate* or
control-srate directly with setf or even let. The global environment is determined by two
additional variables: *default-sound-srate* and *default-control-srate*. You can add
lines like the following to your init.lsp file to change the default global environment:

(setf *default-sound-srate* 44100.0)
(setf *default-control-srate* 1102.5)

If you have already started Nyquist and want to change the defaults, the following functions should be
used:

(set-control-srate 1102.5)(set-sound-srate 22050.0)

These modify the default values and reinitialize the Nyquist environment.

Page 18 NYQUIST MANUAL

CONTINUOUS TRANSFORMATIONS AND TIME WARPS Page 19

3. Continuous Transformations and Time Warps
Nyquist transformations were discussed in the previous chapter, but all of the examples used scalar

values. For example, we saw the loud transformation used to change loudness by a fixed amount. What
if we want to specify a crescendo, where the loudness changes gradually over time?

It turns out that all transformations can accept signals as well as numbers, so transformations can be
continuous over time. This raises some interesting questions about how to interpret continuous
transformations. Should a loudness transformation apply to the internal details of a note or only affect the
initial loudness? It might seem unnatural for a decaying piano note to perform a crescendo. On the other
hand, a sustained trumpet sound should probably crescendo continuously. In the case of time warping
(tempo changes), it might be best for a drum roll to maintain a steady rate, a trill may or may not change
rates with tempo, and a run of sixteenth notes will surely change its rate.

These issues are complex, and Nyquist cannot hope to automatically do the right thing in all cases.
However, the concept of behavioral abstraction provides an elegant solution. Since transformations
merely modify the environment, behaviors are not forced to implement any particular style of
transformation. Nyquist is designed so that the default transformation is usually the right one, but it is
always possible to override the default transformation to achieve a particular effect.

3.1. Simple Transformations
The ‘‘simple’’ transformations affect some parameter, but have no effect on time itself. The simple

transformations that support continuously changing parameters are: sustain, loud, and transpose.

As a first example, Let us use transpose to create a chromatic scale. First define a sequence of
tones at a steady pitch: (defun tone-seq () (seqrep (i 16) (stretch 0.25 (osc-
note c4)))) Now define a linearly increasing ramp to serve as a transposition function: (defun
pitch-rise () (stretch 4.0 (scale 16 (ramp)))) This ramp has a duration of 4
seconds, and over that interval it rises from 0 to 16 (corresponding to the 16 semitones we want to
transpose). Now, pitch-rise is used to transpose tone-seq: (defun chromatic-scale
() (transpose (pitch-rise) (tone-seq)))

Similar transformations can be constructed to change the sustain or ‘‘duty factor’’ of notes and their
loudness. The following expression plays the previously constructed chromatic scale with increasing note
durations. The rhythm is unchanged, but the note length changes from staccato to legato: (sustain
(stretch 4 (sum 0.2 (ramp))) (chromatic-scale)) The resulting sustain function will
ramp from 0.2 to 1.2. A sustain of 1.2 denotes a 20 percent overlap between notes. The sum has a stretch
factor of 4, so it will extend over the 4 second duration of chromatic-scale.

What do these transformations mean? How did the system know to produce a pitch rise rather than a
continuous glissando? This all relates to the idea of behavioral abstraction. It is possible to design
sounds that do glissando under the transpose transform, and you can even make sounds that ignore
transpose altogether. As explained in Chapter 2, the transformations modify the environment, and
behaviors can reference the environment to determine what signals to generate. All built-in functions,
such as osc, have a default behavior.

The default behavior for sound primitives under transpose, sustain, and loud transformations is
to sample the environment at the beginning of the note. Transposition is not quantized to semitones or

Page 20 NYQUIST MANUAL

any other scale, but in our example, we arranged for the transposition to work out to integer numbers of
semitones, so we got a chromatic scale.

Transposition only applies to the oscillator and sampling primitives osc, partial, sampler, sine,
fmosc, and amosc. Sustain applies to osc, env, and pwl. (Note that amosc and fmosc get their
durations from the modulation signal, so they may indirectly depend upon the sustain.) Loud applies to
osc, sampler, cue, sound, fmosc, and amosc. (But not pwl or env.)

3.2. Time Warps
The most interesting transformations have to do with transforming time itself. The warp

transformation provides a mapping function from logical (score) time to real time. The slope of this
function tells us how many units of real time are covered by one unit of score time. This is proportional
to 1/tempo. A higher slope corresponds to a slower tempo.

To demonstrate warp, we will define a time warp function using pwl:
(defun warper ()
(pwl .25 .4 .75 .6 1.0 1.0 2.0 2.0 2.0))

This function has an initial slope of .4/.25 = 1.6. It may be easier to think in reciprocal terms: the initial
tempo is .25/.4 = .625. Between 0.25 and 0.75, the tempo is .5/.2 = 2.5, and from 0.75 to 1.0, the tempo is
again .625. It is important for warp functions to completely span the interval of interest (in our case it
will be 0 to 1), and it is safest to extend a bit beyond the interval, so we extend the function on to 2.0 with
a tempo of 1.0. Next, we stretch and scale the warper function to cover 4 seconds of score time and 4
seconds of real time:

(defun warp4 () (stretch 4 (scale 4 (warper))))

Figure 2 shows a plot of this warp function. Now, we can warp the tempo of the tone-seq defined
above using warp4:

(play (warp (warp4) (tone-seq)))

Figure 3 shows the result graphically. Notice that the durations of the tones are warped as well as their
onsets. Envelopes are not shown in detail in the figure. Because of the way env is defined, the tones
will have constant attack and decay times, and the sustain will be adjusted to fit the available time.

3.3. Abstract Time Warps
We have seen a number of examples where the default behavior did the ‘‘right thing,’’ making the code

straightforward. This is not always the case. Suppose we want to warp the note onsets but not the
durations. We will first look at an incorrect solution and discuss the error. Then we will look at a slightly
more complex (but correct) solution.

The default behavior for most Nyquist built-in functions is to sample the time warp function at the
nominal starting and ending score times of the primitive. For many built-in functions, including osc, the
starting logical time is 0 and the ending logical time is 1, so the time warp function is evaluated at these
points to yield real starting and stopping times, say 15.23 and 16.79. The difference (e.g. 1.56) becomes
the signal duration, and there is no internal time warping. The pwl function behaves a little differently.
Here, each breakpoint is warped individually, but the resulting function is linear between the breakpoints.

A consequence of the default behavior is that notes stretch when the tempo slows down. Returning to

CONTINUOUS TRANSFORMATIONS AND TIME WARPS Page 21

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Figure 2: The result of (warp4), intended to map 4 seconds of score time into 4
seconds of real time. The function extends beyond 4 seconds (the dashed lines) to make
sure the function is well-defined at location (4, 4). Nyquist sounds are ordinarily open
on the right.

0 1 2 3 4

Figure 3: When (warp4) is applied to (tone-seq-2), the note onsets and durations
are warped.

our example, recall that we want to warp only the note onset times and not the duration. One would think
that the following would work:

(defun tone-seq-2 ()
(seqrep (i 16)

(stretch-abs 0.25 (osc-note c4))))

(play (warp (warp4) (tone-seq-2)))

Here, we have redefined tone-seq, renaming it to tone-seq-2 and changing the stretch to
stretch-abs. The stretch-abs should override the warp function and produce a fixed duration.

Page 22 NYQUIST MANUAL

If you play the example, you will hear steady sixteenths and no tempo changes. What is wrong? In a
sense, the ‘‘fix’’ works too well. Recall that sequences (including seqrep) determine the starting time
of the next note from the logical stop time of the previous sound in the sequence. When we forced the
stretch to 0.25, we also forced the logical stop time to 0.25 real seconds from the beginning, so every note
starts 0.25 seconds after the previous one, resulting in a constant tempo.

Now let us design a proper solution. The trick is to use stretch-abs as before to control the
duration, but to restore the logical stop time to a value that results in the proper inter-onset time interval:

(defun tone-seq-3 ()
(seqrep (i 16)

(set-logical-stop
(stretch-abs 0.25 (osc-note c4))
0.25)))

(play (warp (warp4) (tone-seq-3)))

Notice the addition of set-logical-stop enclosing the stretch-abs expression to set the logical
stop time. A possible point of confusion here is that the logical stop time is set to 0.25, the same number
given to stretch-abs! How does setting the logical stop time to 0.25 result in a tempo change?
When used within a warp transformation, the second argument to set-logical-stop refers to score
time rather than real time. Therefore, the score duration of 0.25 is warped into real time, producing
tempo changes according to the enviroment. Figure 4 illustrates the result graphically.

0 1 2 3 4

Figure 4: When (warp4) is applied to (tone-seq-3), the note onsets are warped,
but not the duration, which remains a constant 0.25 seconds. In the fast middle section,
this causes notes to overlap. Nyquist will sum (mix) them.

3.4. Nested Transformations
Transformations can be nested. In particular, a simple transformation such as transpose can be nested

within a time warp transformation. Suppose we want to warp our chromatic scale example with the
warp4 time warp function. As in the previous section, we will show an erroneous simple solution
followed by a correct one.

The simplest approach to a nested transformation is to simply combine them and hope for the best:
(play (warp (warp4)

(transpose (pitch-rise) (tone-seq))))

This example will not work the way you might expect. Here is why: the warp transformation applies to

CONTINUOUS TRANSFORMATIONS AND TIME WARPS Page 23

the (pitch-rise) expression, which is implemented using the ramp function. The default behavior
of ramp is to interpolate linearly (in real time) between two points. Thus, the ‘‘warped’’ ramp function
will not truly reflect the internal details of the intended time warp. What we need is a way to properly
compose the warp and ramp functions. This will lead to a correct solution.

Here is the modified code to properly warp a transposed sequence. Note that the original sequence is
used without modification. The only complication is producing a properly warped transposition function:

(play (warp (warp4)
(transpose

(control-warp (get-warp)
(warp-abs nil (pitch-rise)))

(tone-seq))))

To properly warp the pitch-rise transposition function, we use control-warp, which applies a
warp function to a function of score time, yielding a function of real time. We need to pass the warp
desired function to control-warp, so we fetch it from the environment ith (get-warp). Finally,
since the warping is done here, we want to shield the pitch-rise expression from further warping, so
we enclose it in (warp-abs nil ...).

An aside: This last example illustrates a difficulty in the design of Nyquist. To support behavioral
abstraction universally, we must rely upon behaviors to ‘‘do the right thing.’’ In this case, we would like
the ramp function to warp continuously according to the environment. But this is inefficient and
unnecessary in many other cases where ramp and especially pwl are used. (pwl warps its breakpoints,
but still interpolates linearly between them.) Also, if the default behavior of primitives is to warp in a
continuous manner, this makes it difficult to build custom abstract behaviors. The final vote is not in.

Page 24 NYQUIST MANUAL

MORE EXAMPLES Page 25

4. More Examples
This chapter explores Nyquist through additional examples. The reader may wish to browse through

these and move on to Chapter 5, which is a reference section describing Nyquist functions.

4.1. Stretching Sampled Sounds
This example illustrates how to stretch a sound, resampling it in the process. Because sounds in

Nyquist are values that contain the sample rate, start time, etc., use sound to convert a sound into a
behavior that can be stretched, e.g. (sound a-snd). This behavior stretches a sound according to the
stretch factor in the environment, set using stretch. For accuracy and efficiency, Nyquist does not
resample a stretched sound until absolutely necessary. The force-srate function is used to resample
the result so that we end up with a ‘‘normal’’ sample rate that is playable on ordinary sound cards.

; if a-snd is not loaded, load sound sample:
;
(if (not (boundp ’a-snd))

(setf a-snd
(s-read "demo-snd.nh" :srate 22050.0)))

; the SOUND operator shifts, stretches, clips and scales
; a sound according to the current environment
;
(play (force-srate *default-sound-srate*

(stretch 3.0 (sound a-snd))))

(defun down ()
(force-srate *default-sound-srate*

(seq (stretch 0.2 (sound a-snd))
(stretch 0.3 (sound a-snd))
(stretch 0.4 (sound a-snd))
(stretch 0.5 (sound a-snd))
(stretch 0.6 (sound a-snd)))))

(play (down))

; that was so much fun, let’s go back up:
;
(defun up ()
(force-srate *default-sound-srate*

(seq (stretch 0.5 (sound a-snd))
(stretch 0.4 (sound a-snd))
(stretch 0.3 (sound a-snd))
(stretch 0.2 (sound a-snd)))))

; and write a sequence
;
(play (seq (down) (up) (down)))

Notice the use of the sound behavior as opposed to cue. The cue behavior shifts and scales its
sound according to *warp* and *loud*, but it does not change the duration or resample the sound. In
contrast, sound not only shifts and scales its sound, but it also stretches it by resampling or changing the
effective sample rate according to *warp*. If *warp* is a continuous warping function, then the sound
will be stretched by time-varying amounts. (The *transpose* element of the environment is ignored
by both cue and sound.)

Page 26 NYQUIST MANUAL

Note: sound may use linear interpolation rather than a high-quality resampling algorithm. In some
cases, this may introduce errors audible as noise. Use resample (see Section 5.2.2) for high-quality
interpolation.

In the functions up and down, the *warp* is set by stretch, which simply scales time by a
constant scale factor. In this case, sound can ‘‘stretch’’ the signal simply by changing the sample rate
without any further computation. When seq tries to add the signals together, it discovers the sample rates
do not match and uses linear interpolation to adjust all sample rates to match that of the first sound in the
sequence. The result of seq is then converted using force-srate to convert the sample rate, again
using linear interpolation. It would be slightly better, from a computational standpoint, to apply
force-srate individually to each stretched sound rather than applying force-srate after seq.

Notice that the overall duration of (stretch 0.5 (sound a-snd)) will be half the duration of
a-snd.

4.2. Saving Sound Files
So far, we have used the play function to play a sound. The play function works by writing a sound

to a file and then running a system program to play the file. This can be done one step at a time, and it is
often convenient to save a sound to a particular file for later use:

; write the sample to a file,
; the file name can be any Unix filename. Prepending a "./" tells
; s-save to not prepend *default-sf-dir*
;
(s-save a-snd 1000000000 "./a-snd-file.snd")

; play a file
; (only works if you have a Unix program called "play")
(system "play a-snd-file.snd")

; delete the file (do this with care!)
;
(system "rm a-snd-file.snd")

; now let’s do it using a variable as the file name
;
(setf my-sound-file "./a-snd-file.snd")

(s-save a-snd 1000000000 my-sound-file)

(system (strcat "play " my-sound-file))

(system (strcat "rm " my-sound-file))

This example shows how s-save can be used to save a sound to a file.

This example also shows how the system function can be used to invoke Unix shell commands, such
as a command to play a file or remove it. Finally, notice that strcat can be used to concatenate a
command name to a file name to create a complete command that is then passed to system. (This is
convenient if the sound file name is stored in a parameter or variable.)

MORE EXAMPLES Page 27

Instead of using system, you should generally use play-file if you just want to play a file, e.g.

; play a sound file, works on any operating system
(play-file "./a-snd-file.snd")
; play the file whose name is the value of a variable:
(play-file my-sound-file)

4.3. Memory Space and Normalization
Sound samples take up lots of memory, and often, there is not enough primary (RAM) memory to hold

a complete composition. For this reason, Nyquist can compute sounds incrementally, saving the final
result on disk. However, Nyquist can also save sounds in memory so that they can be reused efficiently.
In general, if a sound is saved in a global variable, memory will be allocated as needed to save and reuse
it.

The standard way to compute a sound and write it to disk is to pass an expression to the play
command:

(play (my-composition))

Often it is nice to normalize sounds so that they use the full available dynamic range of 16 bits.
Nyquist has an automated facility to help with normalization. By default, Nyquist computes up to 1
million samples (using about 4MB of memory) looking for the peak. The entire sound is normalized so
that this peak will not cause clipping. If the sound has less than 1 million samples, or if the first million
samples are a good indication of the overall peak, then the signal will not clip.

With this automated normalization technique, you can choose the desired peak value by setting
autonorm-target, which is initialized to 0.9. The number of samples examined is
autonorm-max-samples, initially 1 million. You can turn this feature off by executing:

(autonorm-off)

and turn it back on by typing:
(autonorm-on)

This normalization technique is in effect when *autonorm-type* is ’lookahead, which is the
default.

An alternative normalization method uses the peak value from the previous call to play. After playing
a file, Nyquist can adjust an internal scale factor so that if you play the same file again, the peak
amplitude will be *autonorm-target*, which is initialized to 0.9. This can be useful if you want to
carefully normalize a big sound that does not have its peak near the beginning. To select this style of
normalization, set *autonorm-type* to the quoted atom ’previous.

You can also create your own normalization method in Nyquist. The peak function computes the
maximum value of a sound. The peak value is also returned from the play macro. You can normalize in
memory if you have enough memory; otherwise you can compute the sound twice. The two techniques
are illustrated here:

Page 28 NYQUIST MANUAL

; normalize in memory. First, assign the sound to a variable so
; it will be retained:
(setf mysound (sim (osc c4) (osc c5)))
; now compute the maximum value (ny:all is 1 giga-samples, you may want a
; smaller constant if you have less than 4GB of memory:
(setf mymax (peak mysound NY:ALL))
(display "Computed max" mymax)
; now write out and play the sound from memory with a scale factor:
(play (scale (/ 1.0 mymax) mysound))

; if you don’t have space in memory, here’s how to do it:
(defun myscore () (sim (osc c4) (osc c5)))
; compute the maximum:
(setf mymax (peak (myscore) NY:ALL))
(display "Computed max" mymax)
; now we know the max, but we don’t have a the sound (it was garbage
; collected and never existed all at once in memory). Compute the sound
; again, this time with a scale factor:
(play (scale (/ 1.0 mymax) (myscore)))

You can also write a sound as a floating point file. This file can then be converted to 16-bit integer
with the proper scaling applied. If a long computation was involved, it should be much faster to scale the
saved sound file than to recompute the sound from scratch. Although not implemented yet in Nyquist,
some header formats can store maximum amplitudes, and some soundfile player programs can rescale
floating point files on the fly, allowing normalized soundfile playback without an extra normalization
pass (but at a cost of twice the disk space of 16-bit samples). You can use Nyquist to rescale a floating
point file and convert it to 16-bit samples for playback.

4.4. Frequency Modulation
The next example uses the Nyquist frequency modulation behavior fmosc to generate various sounds.

The parameters to fmosc are:

(fmosc pitch modulator table phase)

Note that pitch is the number of half-steps, e.g. c4 has the value of 60 which is middle-C, and phase is in
degrees. Only the first two parameters are required:

; make a short sine tone with no frequency modulation
;
(play (fmosc c4 (pwl 0.1)))

; make a longer sine tone -- note that the duration of
; the modulator determines the duration of the tone
;
(play (fmosc c4 (pwl 0.5)))

In the example above, pwl (for Piece-Wise Linear) is used to generate sounds that are zero for the
durations of 0.1 and 0.5 seconds, respectively. In effect, we are using an FM oscillator with no
modulation input, and the result is a sine tone. The duration of the modulation determines the duration of
the generated tone (when the modulation signal ends, the oscillator stops).

The next example uses a more interesting modulation function, a ramp from zero to C4, expressed in
hz. More explanation of pwl is in order. This operation constructs a piece-wise linear function sampled
at the *control-srate*. The first breakpoint is always at (0, 0), so the first two parameters give
the time and value of the second breakpoint, the second two parameters give the time and value of the

MORE EXAMPLES Page 29

third breakpoint, and so on. The last breakpoint has a value of 0, so only the time of the last breakpoint is
given. In this case, we want the ramp to end at C4, so we cheat a bit by having the ramp return to zero
‘‘almost’’ instantaneously between times 0.5 and 0.501.

The pwl behavior always expects an odd number of parameters. The resulting function is shifted and
stretched linearly according to *warp* in the environment. Now, here is the example:

; make a frequency sweep of one octave; the piece-wise linear function
; sweeps from 0 to (step-to-hz c4) because, when added to the c4
; fundamental, this will double the frequency and cause an octave sweep.
;
(play (fmosc c4 (pwl 0.5 (step-to-hz c4) 0.501)))

The same idea can be applied to a non-sinusoidal carrier. Here, we assume that *fm-voice* is
predefined (the next section shows how to define it):

; do the same thing with a non-sine table
;
(play (fmosc cs2 (pwl 0.5 (step-to-hz cs2) 0.501)

fm-voice 0.0))

The next example shows how a function can be used to make a special frequency modulation contour.
In this case the contour generates a sweep from a starting pitch to a destination pitch:

; make a function to give a frequency sweep, starting
; after <delay> seconds, then sweeping from <pitch-1>
; to <pitch-2> in <sweep-time> seconds and then
; holding at <pitch-2> for <hold-time> seconds.
;
(defun sweep (delay pitch-1 sweep-time pitch-2 hold-time)
(let ((interval (- (step-to-hz pitch-2)

(step-to-hz pitch-1))))
(pwl delay 0.0

; sweep from pitch 1 to pitch 2
(+ delay sweep-time) interval
; hold until about 1 sample from the end
(+ delay sweep-time hold-time -0.0005) interval
; quickly ramp to zero (pwl always does this,
; so make it short)
(+ delay sweep-time hold-time))))

; now try it out
;
(play (fmosc cs2 (sweep 0.1 cs2 0.6 gs2 0.5)

fm-voice 0.0))

FM can be used for vibrato as well as frequency sweeps. Here, we use the lfo function to generate
vibrato. The lfo operation is similar to osc, except it generates sounds at the *control-srate*,
and the parameter is hz rather than a pitch:

(play (fmosc cs2 (scale 10.0 (lfo 6.0))
fm-voice 0.0))

What kind of manual would this be without the obligatory FM sound? Here, a sinusoidal modulator
(frequency C4) is multiplied by a slowly increasing ramp from zero to 1000.0.

Page 30 NYQUIST MANUAL

(setf modulator (mult (pwl 1.0 1000.0 1.0005)
(osc c4)))

; make the sound
(play (fmosc c4 modulator))

For more simple examples of FM in Nyquist, see demos/warble_tutorial.htm. Another
interesting FM sound reminiscent of ‘‘scratching’’ can be found with a detailed explanation in
demos/scratch_tutorial.htm..

4.5. Building a Wavetable
In Section 1.3.1, we saw how to synthesize a wavetable. A wavetable for osc also can be extracted

from any sound. This is especially interesting if the sound is digitized from some external sound source
and loaded using the s-read function. Recall that a table is a list consisting of a sound, the pitch of that
sound, and T (meaning the sound is periodic).

In the following, a sound is first read from the file demo-snd.nh. Then, the extract function is
used to extract the portion of the sound between 0.110204 and 0.13932 seconds. (These numbers might
be obtained by first plotting the sound and estimating the beginning and end of a period, or by using some
software to look for good zero crossings.) The result of extract becomes the first element of a list.
The next element is the pitch (24.848422), and the last element is T. The list is assigned to
fm-voice.

(if (not (boundp ’a-snd))
(setf a-snd (s-read "demo-snd.nh" :srate 22050.0)))

(setf *fm-voice* (list
(extract 0.110204 0.13932 (cue a-snd))
24.848422
T))

The file examples.lsp contains an extensive example of how to locate zero-crossings, extract a period,
build a waveform, and generate a tone from it. (See ex37 through ex40 in the file.)

4.6. Filter Examples
Nyquist provides a variety of filters. All of these filters take either real numbers or signals as

parameters. If you pass a signal as a filter parameter, the filter coefficients are recomputed at the sample
rate of the control signal. Since filter coefficients are generally expensive to compute, you may want to
select filter control rates carefully. Use control-srate-abs (Section 5.3) to specify the default
control sample rate, or use force-srate (Section 5.2.2) to resample a signal before passing it to a
filter.

Before presenting examples, let’s generate some unfiltered white noise:
(play (noise))

Now low-pass filter the noise with a 1000Hz cutoff:
(play (lp (noise) 1000.0))

The high-pass filter is the inverse of the low-pass:
(play (hp (noise) 1000.0))

MORE EXAMPLES Page 31

Here is a low-pass filter sweep from 100Hz to 2000Hz:
(play (lp (noise) (pwl 0.0 100.0 1.0 2000.0 1.0))))

And a high-pass sweep from 50Hz to 4000Hz:
(play (hp (noise) (pwl 0.0 50.0 1.0 4000.0 1.0)))

The band-pass filter takes a center frequency and a bandwidth parameter. This example has a 500Hz
center frequency with a 20Hz bandwidth. The scale factor is necessary because, due to the resonant peak
of the filter, the signal amplitude exceeds 1.0:

(play (reson (scale 0.005 (noise)) 500.0 20.0)))

In the next example, the center frequency is swept from 100 to 1000Hz, using a constant 20Hz
bandwidth:

(play (reson (scale 0.005 (noise))
(pwl 0.0 100.0 1.0 1000.0 1.0) 20.0)))

For another example with explanations, see demos/wind_tutorial.htm.

4.7. DSP in Lisp
In almost any signal processing system, the vast majority of computation takes place in the inner loops

of DSP algorithms, and Nyquist is designed so that these time-consuming inner loops are in highly-
optimized machine code rather than relatively slow interpreted lisp code. As a result, Nyquist typically
spends 95% of its time in these inner loops; the overhead of using a Lisp interpreter is negligible.

The drawback is that Nyquist must provide the DSP operations you need, or you are out of luck. When
Nyquist is found lacking, you can either write a new primitive signal operation, or you can perform DSP
in Lisp code. Neither option is recommended for inexperienced programmers. Instructions for extending
Nyquist are given in Appendix I. This section describes the process of writing a new signal processing
function in Lisp.

Before implementing a new DSP function, you should decide which approach is best. First, figure out
how much of the new function can be implemented using existing Nyquist functions. For example, you
might think that a tapped-delay line would require a new function, but in fact, it can be implemented by
composing sound transformations to accomplish delays, scale factors for attenuation, and additions to
combine the intermediate results. This can all be packaged into a new Lisp function, making it easy to
use. If the function relies on built-in DSP primitives, it will execute very efficiently.

Assuming that built-in functions cannot be used, try to define a new operation that will be both simple
and general. Usually, it makes sense to implement only the kernel of what you need, combining it with
existing functions to build a complete instrument or operation. For example, if you want to implement a
physical model that requires a varying breath pressure with noise and vibrato, plan to use Nyquist
functions to add a basic pressure envelope to noise and vibrato signals to come up with a composite
pressure signal. Pass that signal into the physical model rather than synthesizing the envelope, noise, and
vibrato within the model. This not only simplifies the model, but gives you the flexibility to use all of
Nyquist’s operations to synthesize a suitable breath pressure signal.

Having designed the new ‘‘kernel’’ DSP operation that must be implemented, decide whether to use C
or Lisp. To use C, you must have a C compiler, the full source code for Nyquist, and you must learn about
extending Nyquist by reading Appendix I. This is the more complex approach, but the result will be very

Page 32 NYQUIST MANUAL

efficient. A C implementation will deal properly with sounds that are not time-aligned or matched in
sample rates. To use Lisp, you must learn something about the XLISP object system, and the result will
be about 50 times slower than C. Also, it is more difficult to deal with time alignment and differences in
sample rates. The remainder of this section gives an example of a Lisp version of snd-prod to illustrate
how to write DSP functions for Nyquist in Lisp.

The snd-prod function is the low-level multiply routine. It has two sound parameters and returns a
sound which is the product of the two. To keep things simple, we will assume that two sounds to be
multiplied have a matched sample rate and matching start times. The DSP algorithm for each output
sample is simply to fetch a sample from each sound, multiply them, and return the product.

To implement snd-prod in Lisp, three components are required:
1. An object is used to store the two parameter sounds. This object will be called upon to yield

samples of the result sound;

2. Within the object, the snd-fetch routine is used to fetch samples from the two input
sounds as needed;

3. The result must be of type SOUND, so snd-fromobject is used to create the result
sound.

The combined solution will work as follows: The result is a value of type sound that retains a
reference to the object. When Nyquist needs samples from the sound, it invokes the sound’s ‘‘fetch’’
function, which in turn sends an XLISP message to the object. The object will use snd-fetch to get a
sample from each stored sound, multiply the samples, and return a result.

Thus the goal is to design an XLISP object that, in response to a :next message will return a proper
sequence of samples. When the sound reaches the termination time, simply return NIL.

The XLISP manual (see Appendix IV describes the object system, but in a very terse style, so this
example will include some explanation of how the object system is used. First, we need to define a class
for the objects that will compute sound products. Every class is a subclass of class class, and you create
a subclass by sending :new to a class.

(setf product-class (send class :new ’(s1 s2)))

The parameter ’(s1 s2) says that the new class will have two instance variables, s1 and s2. In other
words, every object which is an instance of class product-class will have its own copy of these two
variables.

Next, we will define the :next method for product-class:
(send product-class :answer :next ’()
’((let ((f1 (snd-fetch s1))

(f2 (snd-fetch s2)))
(cond ((and f1 f2)

(* f1 f2))
(t nil)))))

The :answer message is used to insert a new method into our new product-class. The method is
described in three parts: the name (:next), a parameter list (empty in this case), and a list of expressions
to be evaluated. In this case, we fetch samples from s1 and s2. If both are numbers, we return their
product. If either is NIL, we terminate the sound by returning nil.

MORE EXAMPLES Page 33

The :next method assumes that s1 and s2 hold the sounds to be multiplied. These must be installed
when the object is created. Objects are created by sending :new to a class. A new object is created, and
any parameters passed to :new are then sent in a :isnew message to the new object. Here is the
:isnew definition for product-class:

(send product-class :answer :isnew ’(p1 p2)
’((setf s1 (snd-copy p1))
(setf s2 (snd-copy p2))))

Take careful note of the use of snd-copy in this initialization. The sounds s1 and s2 are modified
when accessed by snd-fetch in the :next method defined above, but this destroys the illusion that
sounds are immutable values. The solution is to copy the sounds before accessing them; the original
sounds are therefore unchanged. (This copy also takes place implicitly in most Nyquist sound functions.)

To make this code safer for general use, we should add checks that s1 and s2 are sounds with identical
starting times and sample rates; otherwise, an incorrect result might be computed.

Now we are ready to write snd-product, an approximate replacement for snd-prod:
(defun snd-product (s1 s2)
(let (obj)
(setf obj (send product-class :new s1 s2))
(snd-fromobject (snd-t0 s1) (snd-srate s1) obj)))

This code first creates obj, an instance of product-class, to hold s1 and s2. Then, it uses obj to
create a sound using snd-fromobject. This sound is returned from snd-product. Note that in
snd-fromobject, you must also specify the starting time and sample rate as the first two parameters.
These are copied from s1, again assuming that s1 and s2 have matching starting times and sample rates.

Note that in more elaborate DSP algorithms we could expect the object to have a number of instance
variables to hold things such as previous samples, waveform tables, and other parameters.

Page 34 NYQUIST MANUAL

NYQUIST FUNCTIONS Page 35

5. Nyquist Functions
This chapter provides a language reference for Nyquist. Operations are categorized by functionality

and abstraction level. Nyquist is implemented in two important levels: the ‘‘high level’’ supports
behavioral abstraction, which means that operations like stretch and at can be applied. These
functions are the ones that typical users are expected to use, and most of these functions are written in
XLISP.

The ‘‘low-level’’ primitives directly operate on sounds, but know nothing of environmental variables
(such as *warp*, etc.). The names of most of these low-level functions start with ‘‘snd-’’. In general,
programmers should avoid any function with the ‘‘snd-’’ prefix. Instead, use the ‘‘high-level’’
functions, which know about the environment and react appropriately. The names of high-level functions
do not have prefixes like the low-level functions.

There are certain low-level operations that apply directly to sounds (as opposed to behaviors) and are
relatively ‘‘safe’’ for ordinary use. These are marked as such.

Nyquist uses both linear frequency and equal-temperament pitch numbers to specify repetition rates.
Frequency is always specified in either cycles per second (hz), or pitch numbers, also referred to as
‘‘steps,’’ as in steps of the chromatic scale. Steps are floating point numbers such that 60 = Middle C, 61
= C#, 61.23 is C# plus 23 cents, etc. The mapping from pitch number to frequency is the standard
exponential conversion, and fractional pitch numbers are allowed: frequency=440 ×2(pitch−69)/12. There
are many predefined pitch names. By default these are tuned in equal temperament, with A4 = 440Hz,
but these may be changed. (See Section 1.4).

5.1. Sounds
A sound is a primitive data type in Nyquist. Sounds can be created, passed as parameters, garbage

collected, printed, and set to variables just like strings, atoms, numbers, and other data types.

5.1.1. What is a Sound?
Sounds have 5 components:

• srate — the sample rate of the sound.

• samples — the samples.

• signal-start — the time of the first sample.

• signal-stop — the time of one past the last sample.

• logical-stop — the time at which the sound logically ends, e.g. a sound may end at the
beginning of a decay. This value defaults to signal-stop, but may be set to any value.

It may seem that there should be logical-start to indicate the logical or perceptual beginning of a
sound as well as a logical-stop to indicate the logical ending of a sound. In practice, only
logical-stop is needed; this attribute tells when the next sound should begin to form a sequence of
sounds. In this respect, Nyquist sounds are asymmetric: it is possible to compute sequences forward in
time by aligning the logical start of each sound with the logical-stop of the previous one, but one
cannot compute ‘‘backwards’’, aligning the logical end of each sound with the logical start of its
successor. The root of this asymmetry is the fact that when we invoke a behavior, we say when to start,
and the result of the behavior tells us its logical duration. There is no way to invoke a behavior with a

Page 36 NYQUIST MANUAL

direct specification of when to stop1.

Note: there is no way to enforce the intended ‘‘perceptual’’ interpretation of logical-stop. As far
as Nyquist is concerned, these are just numbers to guide the alignment of sounds within various control
constructs.

5.1.2. Multichannel Sounds
Multichannel sounds are represented by Lisp arrays of sounds. To create an array of sounds the XLISP

vector function is useful. Most low-level Nyquist functions (the ones starting with snd-) do not
operate on multichannel sounds. Most high-level functions do operate on multichannel sounds.

5.1.3. Accessing and Creating Sound
Several functions display information concerning a sound and can be used to query the components of a

sound. There are functions that access samples in a sound and functions that construct sounds from
samples.

(sref sound time)
Accesses sound at the point time, which is a local time. If time does not correspond to a sample
time, then the nearest samples are linearly interpolated to form the result. To access a particular
sample, either convert the sound to an array (see snd-samples below), or use snd-srate
and snd-t0 (see below) to find the sample rate and starting time, and compute a time (t) from
the sample number (n):t=(n/srate)+t0 Thus, the lisp code to access the nth sample of a sound
would look like: (sref sound (global-to-local (+ (/ n (snd-srate
sound)) (snd-t0 sound)))) Here is why sref interprets its time argument as a local
time: > (sref (ramp 1) 0.5) ; evaluate a ramp at time 0.5 0.5 > (at 2.0
(sref (ramp 1) 0.5)) ; ramp is shifted to start at 2.0 ; the time, 0.5, is shifted to 2.5
0.5 If you were to use snd-sref, which treats time as global, instead of sref, which treats
time as local, then the first example above would return the same answer (0.5), but the second
example would return 0. Why? Because the (ramp 1) behavior would be shifted to start at
time 2.0, but the resulting sound would be evaluated at global time 0.5. By definition, sounds
have a value of zero before their start time.

(sref-inverse sound value)
Search sound for the first point at which it achieves value and return the corresponding (linearly
interpolated) time. If no inverse exists, an error is raised. This function is used by Nyquist in the
implementation of time warping.

(snd-from-array t0 sr array)
Converts a lisp array of FLONUMs into a sound with starting time t0 and sample rate sr. Safe for
ordinary use. Be aware that arrays of floating-point samples use 14 bytes per sample, and an
additional 4 bytes per sample are allocated by this function to create a sound type.

(snd-fromarraystream t0sr object)
Creates a sound for which samples come from object. The starting time is t0 (a FLONUM), and
the sample rate is sr. The object is an XLISP object (see Section IV.11 for information on
objects.) A sound is returned. When the sound needs samples, they are generated by sending the
message :next to object. If object returns NIL, the sound terminates. Otherwise, object must
return an array of FLONUMs. The values in these arrays are concatenated to form the samples of

1Most behaviors will stop at time 1, warped according to *warp* to some real time, but this is by convention and is not a
direct specification.

NYQUIST FUNCTIONS Page 37

the resulting sound. There is no provision for object to specify the logical stop time of the sound,
so the logical stop time is the termination time.

(snd-fromobjectt0 sr object)
Creates a sound for which samples come from object. The starting time is t0 (a FLONUM), and
the sample rate is sr. The object is an XLISP object (see Section IV.11 for information on objects.
A sound is returned. When the sound needs samples, they are generated by sending the message
:next to object. If object returns NIL, the sound terminates. Otherwise, object must return a
FLONUM. There is no provision for object to specify the logical stop time of the sound, so the
logical stop time is the termination time.

(snd-extent sound maxsamples)
Returns a list of two numbers: the starting time of sound and the terminate time of sound.
Finding the terminate time requires that samples be computed. Like most Nyquist functions, this
is non-destructive, so memory will be allocated to preserve the sound samples. If the sound is
very long or infinite, this may exhaust all memory, so the maxsamples parameter specifies a limit
on how many samples to compute. If this limit is reached, the terminate time will be (incorrectly)
based on the sound having maxsamples samples. This function is safe for ordinary use.

(snd-fetch sound)
Reads samples sequentially from sound. This returns a FLONUM after each call, or NIL when
sound terminates. Note: snd-fetch modifies sound; it is strongly recommended to copy sound
using snd-copy and access only the copy with snd-fetch.

(snd-fetch-array sound len step)
Reads sequential arrays of samples from sound, returning either an array of FLONUMs or NIL
when the sound terminates. The len parameter, a FIXNUM, indicates how many samples should
be returned in the result array. After the array is returned, sound is modified by skipping over
step (a FIXNUM) samples. If step equals len, then every sample is returned once. If step is less
than len, each returned array will overlap the previous one, so some samples will be returned
more than once. If step is greater than len, then some samples will be skipped and not returned in
any array. The step and len may change at each call, but in the current implementation, an internal
buffer is allocated for sound on the first call, so subsequent calls may not specify a greater len
than the first. Note: snd-fetch-array modifies sound; it is strongly recommended to copy
sound using snd-copy and access only the copy with snd-fetch-array.

(snd-flatten sound maxlen)
This function is identical to snd-length. You would use this function to force samples to be
computed in memory. Normally, this is not a good thing to do, but here is one appropriate use: In
the case of sounds intended for wavetables, the unevaluated sound may be larger than the
evaluated (and typically short) one. Calling snd-flatten will compute the samples and allow
the unit generators to be freed in the next garbage collection. Note: If a sound is computed from
many instances of table-lookup oscillators, calling snd-flatten will free the oscillators and
their tables. Calling (stats) will print how many total bytes have been allocated to tables.

(snd-length sound maxlen)
Counts the number of samples in sound up to the physical stop time. If the sound has more than
maxlen samples, maxlen is returned. Calling this function will cause all samples of the sound to
be computed and saved in memory (about 4 bytes per sample). Otherwise, this function is safe
for ordinary use.

(snd-maxsamp sound)
Computes the maximum of the absolute value of the samples in sound. Calling this function will
cause samples to be computed and saved in memory. (This function should have a maxlen
parameter to allow self-defense against sounds that would exhaust available memory.)
Otherwise, this function is safe for ordinary use. This function will probably be removed in a
future version. See peak, a replacement (page 66).

(snd-play expression)

Page 38 NYQUIST MANUAL

Evaluates expression to obtain a sound or array of sounds, computes all of the samples (without
retaining them in memory), and returns. If this happens faster than real time for interesting
sounds, you might want to modify Nyquist to actually write the samples directly to an audio
output device. Meanwhile, since this function does not save samples in memory or write them to
a disk, it is useful in determining how much time is spent calculating samples. See s-save
(Section 5.5) for saving samples to a file, and play (Section 5.5) to play a sound. This function
is safe for ordinary use.

(snd-print-tree sound)
Prints an ascii representation of the internal data structures representing a sound. This is useful
for debugging Nyquist. This function is safe for ordinary use.

(snd-samples sound limit)
Converts the samples into a lisp array. The data is taken directly from the samples, ignoring
shifts. For example, if the sound starts at 3.0 seconds, the first sample will refer to time 3.0, not
time 0.0. A maximum of limit samples is returned. This function is safe for ordinary use, but like
snd-from-array, it requires a total of slightly over 18 bytes per sample.

(snd-srate sound)
Returns the sample rate of the sound. Safe for ordinary use.

(snd-time sound)
Returns the start time of the sound. This will probably go away in a future version, so use
snd-t0 instead.

(snd-t0 sound)
Returns the time of the first sample of the sound. Note that Nyquist operators such as add always
copy the sound and are allowed to shift the copy up to one half sample period in either direction
to align the samples of two operands. Safe for ordinary use.

(snd-print expression maxlen)
Evaluates expression to yield a sound or an array of sounds, then prints up to maxlen samples to
the screen (stdout). This is similar to snd-save, but samples appear in text on the screen
instead of in binary in a file. This function is intended for debugging. Safe for ordinary use.

(snd-set-logical-stop sound time)
Returns a sound which is sound, except that the logical stop of the sound occurs at time. Note: do
not call this function. When defining a behavior, use set-logical-stop or
set-logical-stop-abs instead.

(snd-sref sound time)
Evaluates sound at the global time given by time. Safe for ordinary use, but normally, you should
call sref instead.

(snd-stop-time sound)
Returns the stop time of sound. Sounds can be ‘‘clipped’’ or truncated at a particular time. This
function returns that time or MAX-STOP-TIME if he programmer has not specified a stop time
for the sound. Safe for ordinary use.

(soundp sound)
Returns true iff sound is a SOUND. Safe for ordinary use.

(stats)
Prints the memory usage status. See also the XLISP mem function. Safe for ordinary use. This is
the only way to find out how much memory is being used by table-lookup oscillator instances.

NYQUIST FUNCTIONS Page 39

5.1.4. Miscellaneous Functions
These are all safe and recommended for ordinary use.

(db-to-linear x)
Returns the conversion of x from decibels to linear. 0dB is converted to 1. 20dB represents a
linear factor of 10. If x is a sound, each sample is converted and a sound is returned. If x is a
multichannel sound, each channel is converted and a multichannel sound (array) is returned.
Note: With sounds, conversion is only performed on actual samples, not on the implicit zeros
before the beginning and after the termination of the sound. Sample rates, start times, etc. are
taken from x.

(follow sound floor risetime falltime lookahead)
An envelope follower intended as a commponent for compressor and limiter functions. The basic
goal of this function is to generate a smooth signal that rides on the peaks of the input signal. The
usual objective is to produce an amplitude envelope given a low-sample rate (control rate) signal
representing local RMS measurements. The first argument is the input signal. The floor is the
minimum output value. The risetime is the time (in seconds) it takes for the output to rise
(exponentially) from floor to unity (1.0) and the falltime is the time it takes for the output to fall
(exponentially) from unity to floor. The algorithm looks ahead for peaks and will begin to
increase the output signal according to risetime in anticipation of a peak. The amount of
anticipation (in seconds) is given by lookahead. The algorithm is as follows: the output value is
allowed to increase according to risetime or decrease according to falltime. If the next input
sample is in this range, that sample is simply output as the next output sample. If the next input
sample is too large, the algorithm goes back in time as far as necessary to compute an envelope
that rises according to risetime to meet the new value. The algorithm will only work backward as
far as lookahead. If that is not far enough, then there is a final forward pass computing a rising
signal from the earliest output sample. In this case, the output signal will be at least momentarily
less than the input signal and will continue to rise exponentially until it intersects the input signal.
If the input signal falls faster than indicated by falltime, the output fall rate will be limited by
falltime, and the fall in output will stop when the output reaches floor. This algorithm can make
two passes througth the buffer on sharply rising inputs, so it is not particularly fast. With short
buffers and low sample rates this should not matter. See snd-avg for a function that can help to
generate a low-sample-rate input for follow. See snd-chase in Section 5.6.3 for a related
filter.

(gate sound floor risetime falltime lookahead threshold)
Generate an exponential rise and decay intended for noise gate implementation. The decay starts
when the signal drops below threshold and stays there for longer than lookahead (a FLONUM in
seconds). (The signal begins to drop when the signal crosses threshold, not after lookahead.)
Decay continues until the value reaches floor (a FLONUM), at which point the decay stops and the
output value is held constant. Either during the decay or after the floor is reached, if the signal
goes above threshold, then the ouptut value will rise to unity (1.0) at the point the signal crosses
the threshold. Because of internal lookahead, the signal actually begins to rise before the signal
crosses threshold. The rise is a constant-rate exponential and set so that a rise from floor to unity
occurs in risetime. Similary, the fall is a constant-rate exponential such that a fall from unity to
floor takes falltime.

(hz-to-step freq)
Returns a step number for freq (in hz), which can be either a number of a SOUND. The result has
the same type as the argument. See also step-to-hz (below).

(linear-to-db x)
Returns the conversion of x from linear to decibels. 1 is converted to 0. 0 is converted to -INF (a
special IEEE floating point value.) A factor of 10 represents a 20dB change. If x is a sound, each
sample is converted and a sound is returned. If x is a multichannel sound, each channel is
converted and a multichannel sound (array) is returned. Note: With sounds, conversion is only
performed on actual samples, not on the implicit zeros before the beginning and after the

Page 40 NYQUIST MANUAL

termination of the sound. Start times, sample rates, etc. are taken from x.

(log x)
Calculates the natural log of x (a FLONUM). (See s-log for a version that operates on signals.)

(set-control-srate rate)
Sets the default sampling rate for control signals to rate by setting
default-control-srate and reinitializing the environment. Do not call this within any
synthesis function (see the control-srate-abs transformation, Section 5.3).

(set-sound-srate rate)
Sets the default sampling rate for audio signals to rate by setting *default-sound-srate*
and reinitializing the environment. Do not call this within any synthesis function (see the
sound-srate-abs transformation, Section 5.3).

(set-pitch-names)
Initializes pitch variables (c0, cs0, df0, d0, ... b0, c1, ... b7). A440 (the default tuning) is
represented by the step 69.0, so the variable a4 (fourth octave A) is set to 69.0. You can change
the tuning by setting *A4-Hertz* to a value (in Hertz) and calling set-pitch-names to
reinitialize the pitch variables. Note that this will result in non-integer step values. It does not
alter the mapping from step values to frequency. There is no built-in provision for stretched
scales or non-equal temperament, although users can write or compute any desired fractional step
values.

(step-to-hz pitch)
Returns a frequency in hz for pitch, a step number or a SOUND type representing a time-varying
step number. The result is a FLONUM if pitch is a number, and a SOUND if pitch is a SOUND. See
also hz-to-step (above).

(get-duration dur)
Gets the actual duration of of something starting at a local time of 0 and ending at a local time of
dur times the current sustain. For convenience, *rslt* is set to the global time corresponding to
local time zero.

(get-loud)
Gets the current value of the *loud* environment variable. If *loud* is a signal, it is
evaluated at local time 0 and a number (FLONUM) is returned.

(get-sustain)
Gets the current value of the *sustain* environment variable. If *sustain* is a signal, it is
evaluated at local time 0 and a number (FLONUM) is returned.

(get-transpose)
Gets the current value of the *transpose* environment variable. If *transpose* is a
signal, it is evaluated at local time 0 and a number (FLONUM) is returned.

(get-warp)
Gets a function corresponding to the current value of the *warp* environment variable. For
efficiency, *warp* is stored in three parts representing a shift, a scale factor, and a continuous
warp function. Get-warp is used to retrieve a signal that maps logical time to real time. This
signal combines the information of all three components of *warp* into a single signal. If the
continuous warp function component is not present (indicating that the time warp is a simple
combination of at and stretch transformations), an error is raised. This function is mainly for
internal system use. In the future, get-warp will probably be reimplemented to always return a
signal and never raise an error.

(local-to-global local-time)
Converts a score (local) time to a real (global) time according to the current environment.

(osc-enable flag)
Enable or disable Open Sound Control. (See Appendix II.) Enabling creates a socket and a

NYQUIST FUNCTIONS Page 41

service that listens for UDP packets on port 7770. Currently, only messages of the form
\slider with an integer index and a floating point value are accepted. These set internal slider
values accessed by the snd-slider function. Disabling terminates the service (polling for
messages) and closes the socket. The previous state of enablement is returned, e.g. if OSC is
enabled and flag is nil, OSC is disabled and T (true) is returned because OSC was enabled at the
time of the call. This function only exists if Nyquist is compiled with the compiler flag OSC.
Otherwise, the function exists but always returns the symbol DISABLED. Consider lowering the
audio latency using snd-set-latency. Warning: there is the potential for network-based
attacks using OSC. It is tempting to add the ability to evaluate XLISP expressions sent via OSC,
but this would create unlimited and unprotected access to OSC clients. For now, it is unlikely that
an attacker could do more than manipulate slider values.

(snd-set-latency latency)
Set the latency requested when Nyquist plays sound to latency, a FLONUM. The previous value is
returned. The default is 0.3 seconds. To avoid glitches, the latency should be greater than the time
required for garbage collection and message printing and any other system activity external to
Nyquist.

5.2. Behaviors

5.2.1. Using Previously Created Sounds
These behaviors take a sound and transform that sound according to the environment. These are useful

when writing code to make a high-level function from a low-level function, or when cuing sounds which
were previously created:

(cue sound)
Applies *loud*, the starting time from *warp*, *start*, and *stop* to sound.

(cue-file filename)
Same as cue, except the sound comes from the named file, samples from which are coerced to
the current default *sound-srate* sample rate.

(sound sound)
Applies *loud*, *warp*, *start*, and *stop* to sound.

(control sound)
This function is identical to sound, but by convention is used when sound is a control signal
rather than an audio signal.

5.2.2. Sound Synthesis
These functions provide musically interesting creation behaviors that react to their environment; these

are the ‘‘unit generators’’ of Nyquist:

(const value [duration])
Creates a constant function at the *control-srate*. Every sample has the given value, and
the default duration is 1.0. See also s-rest, which is equivalent to calling const with zero,
and note that you can pass scalar constants (numbers) to sim, sum, and mult where they are
handled more efficiently than constant functions.

(env t1 t2 t4 l1 l2 l3 [dur])
Creates a 4-phase envelope. ti is the duration of phase i, and li is the final level of phase i. t3 is
implied by the duration dur, and l4 is 0.0. If dur is not supplied, then 1.0 is assumed. The
envelope duration is the product of dur, *stretch*, and *sustain*. If t1 + t2 + 2ms + t4 is

Page 42 NYQUIST MANUAL

greater than the envelope duration, then a two-phase envelope is substituted that has an
attack/release time ratio of t1/t4. The sample rate of the returned sound is *control-srate*.
(See pwl for a more general piece-wise linear function generator.) The effect of time warping is
to warp the starting time and ending time. The intermediate breakpoints are then computed as
described above.

(exp-dec hold halfdec length)
This convenient envelope shape is a special case of pwev (see Section 5.2.2.2). The envelope
starts at 1 and is constant for hold seconds. It then decays with a half life of halfdec seconds until
length. (The total duration is length.) In other words, the amplitude falls by half each halfdec
seconds. When stretched, this envelope scales linearly, which means the hold time increases and
the half decay time increases.

(force-srate srate sound)
Returns a sound which is up- or down-sampled to srate. Interpolation is linear, and no
prefiltering is applied in the down-sample case, so aliasing may occur. See also resample.

(lfo freq [duration table phase])
Just like osc (below) except this computes at the *control-srate* and frequency is
specified in Hz. Phase is specified in degrees. The *transpose* and *sustain* is not
applied. The effect of time warping is to warp the starting and ending times. The signal itself
will have a constant unwarped frequency.

(fmlfo freq [table phase])
A low-frequency oscillator that computes at the *control-srate* using a sound to specify a
time-varying frequency in Hz. Phase is a FLONUM in degrees. The duration of the result is
determined by freq.

(maketable sound)
Assumes that the samples in sound constitute one period of a wavetable, and returns a wavetable
suitable for use as the table argument to the osc function (see below). Currently, tables are
limited to 1,000,000 samples. This limit is the compile-time constant max_table_len set in
sound.h.

(build-harmonic n table-size)
Intended for constructing wavetables, this function returns a sound of length table-size samples
containing n periods of a sinusoid. These can be scaled and summed to form a waveform with
the desired harmonic content. See page 6 for an example.

(clarinet step breath-env)
A physical model of a clarinet from STK. The step parameter is a FLONUM that controls the tube
length, and the breath-env (a SOUND) controls the air pressure and also determines the length of
the resulting sound. The breath-env signal should range from zero to one.

(clarinet-freqstep breath-env freq-env)
A variation of clarinet that includes a variable frequency control, freq-env, which specifies
frequency deviation in Hz. The duration of the resulting sound is the minimum duration of
breath-env and freq-env. These parameters may be of type FLONUM or SOUND. FLONUMs are
coerced into SOUNDs with a nominal duration arbitrarily set to 30.

(clarinet-allstep breath-env freq-env vibrato-freq vibrato-gain reed-stiffness noise)
A variation of clarinet-freq that includes controls vibrato-freq (a FLONUM for vibrato
frequency in Hertz), vibrato-gain (a FLONUM for the amount of amplitude vibrato), reed-stiffness
(a FLONUM or SOUND controlling reed stiffness in the clarinet model), and noise (a FLONUM or
SOUND controlling noise amplitude in the input air pressure). The vibrato-gain is a number from
zero to one, where zero indicates no vibrato, and one indicates a plus/minus 50% change in breath
envelope values. Similarly, the noise parameter ranges from zero to one where zero means no
noise and one means white noise with a peak amplitude of plus/minus 40% of the breath-env. The
reed-stiffness parameter varies from zero to one. The duration of the resulting sound is the

NYQUIST FUNCTIONS Page 43

minimum duration of breath-env, freq-env, reed-stiffness, and noise. As with clarinet-freq,
these parameters may be either FLONUMs or SOUNDs, and FLONUMs are coerced to sounds with a
nominal duration of 30.

(control-warp warp-fn signal [wrate])
Applies a warp function warp-fn to signal using function composition. If wrate is omitted, linear
interpolation is used. warp-fn is a mapping from score (logical) time to real time, and signal is a
function from score time to real values. The result is a function from real time to real values at a
sample rate of *control-srate*. See sound-warp for an explanation of wrate and high-
quality warping.

(mult beh1 beh2 ...)
Returns the product of behaviors. The arguments may also be numbers, in which case simple
multiplication is performed. If a number and sound are mixed, the scale function is used to
scale the sound by the number. When sounds are multiplied, the resulting sample rate is the
maximum sample rate of the factors.

(prod beh1 beh2 ...)
Same as mult.

(pan sound where)
Pans sound (a behavior) according to where (another behavior or a number). Sound must be
monophonic. Where may be a monophonic sound (e.g. (ramp) or simply a number (e.g. 0.5).
In either case, where should range from 0 to 1, where 0 means pan completely left, and 1 means
pan completely right. For intermediate values, the sound to each channel is scaled linearly.
Presently, pan does not check its arguments carefully.

(prod beh1 beh2 ...)
Same as mult.

(resample sound srate)
Similar to force-srate, except high-quality interpolation is used to prefilter and reconstruct
the signal at the new sample rate. Also, the result is scaled by 0.95 to reduce problems with
clipping. (See also sound-warp.)

(sax step breath-env)
A physical model of a sax from STK. The step parameter is a FLONUM that controls the tube
length, and the breath-env controls the air pressure and also determines the length of the resulting
sound. The breath-env signal should range from zero to one.

(sax-freqstep breath-env freq-env)
A variation of sax that includes a variable frequency control, freq-env, which specifies frequency
deviation in Hz. The duration of the resulting sound is the minimum duration of breath-env and
freq-env. These parameters may be of type FLONUM or SOUND. FLONUMs are coerced into
SOUNDs with a nominal duration arbitrarily set to 30.

(sax-allstep breath-env freq-env vibrato-freq vibrato-gain reed-stiffness noise blow-pos
reed-table-offset)
A variation of sax-freq that includes controls vibrato-freq (a FLONUM for vibrato frequency in
Hertz), vibrato-gain (a FLONUM for the amount of amplitude vibrato), reed-stiffness (a SOUND
controlling reed stiffness in the sax model), noise (a SOUND controlling noise amplitude in the
input air pressure), blow-pos (a SOUND controlling the point of excitation of the air column), and
reed-table-offset (a SOUND controlling a parameter of the reed model). The vibrato-gain is a
number from zero to one, where zero indicates no vibrato, and one indicates a plus/minus 50%
change in breath envelope values. Similarly, the noise parameter ranges from zero to one where
zero means no noise and one means white noise with a peak amplitude of plus/minus 40% of the
breath-env. The reed-stiffness, blow-pos, and reed-table-offset parameters all vary from zero to
one. The duration of the resulting sound is the minimum duration of breath-env, freq-env,
reed-stiffness, noise, breath-env, blow-pos, and reed-table-offset. As with sax-freq, these

Page 44 NYQUIST MANUAL

parameters may be either FLONUMs or SOUNDs, and FLONUMs are coerced to sounds with a
nominal duration of 30.

(scale scale sound)
Scales the amplitude of sound by the factor scale. Identical function to snd-scale, except that
it handles multichannel sounds. Sample rates, start times, etc. are taken from sound.

(scale-db db sound)
Scales the amplitude of sound by the factor db, expressed in decibels. Sample rates, start times,
etc. are taken from sound.

(scale-srate sound scale)
Scales the sample rate of sound by scale factor. This has the effect of linearly shrinking or
stretching time (the sound is not upsampled or downsampled). This is a special case of
snd-xform (see Section 5.6.2).

(shift-time sound shift)
Shift sound by shift seconds. If the sound is f(t), then the result is f(t−shift). See Figure 5. This is
a special case of snd-xform (see Section 5.6.2).

snd

shift

(shift-time snd shift)

Figure 5: The shift-time function shifts a sound in time according to its shift
argument.

(sound-warp warp-fn signal [wrate])
Applies a warp function warp-fn to signal using function composition. If the optional parameter
wrate is omitted or NIL, linear interpolation is used. Otherwise, high-quality sample
interpolation is used, and the result is scaled by 0.95 to reduce problems with clipping
(interpolated samples can exceed the peak values of the input samples.) warp-fn is a mapping
from score (logical) time to real time, and signal is a function from score time to real values. The
result is a function from real time to real values at a sample rate of *sound-srate*. See also
control-warp.

If wrate is not NIL, it must be a number. The parameter indicates that high-quality resampling
should be used and specifies the sample rate for the inverse of warp-fn. Use the lowest number
you can. (See below for details.) Note that high-quality resampling is much slower than linear
interpolation.

NYQUIST FUNCTIONS Page 45

To perform high-quality resampling by a fixed ratio, as opposed to a variable ratio allowed in
sound-warp, use scale-srate to stretch or shrink the sound, and then resample to
restore the original sample rate.

Sound-warp and control-warp both take the inverse of warp-fn to get a function from real
time to score time. Each sample of this inverse is thus a score time; signal is evaluated at each of
these score times to yield a value, which is the desired result. The sample rate of the inverse warp
function is somewhat arbitrary. With linear interpolation, the inverse warp function sample rate is
taken to be the output sample rate. Note, however, that the samples of the inverse warp function
are stored as 32-bit floats, so they have limited precision. Since these floats represent sample
times, rounding can be a problem. Rounding in this case is equivalent to adding jitter to the
sample times. Nyquist ignores this problem for ordinary warping, but for high-quality warping,
the jitter cannot be ignored.

The solution is to use a rather low sample rate for the inverse warp function. Sound-warp can
then linearly interpolate this signal using double-precision floats to minimize jitter between
samples. The sample rate is a compromise: a low sample rate minimizes jitter, while a high
sample rate does a better job of capturing detail (e.g. rapid fluctuations) in the warp function. A
good rule of thumb is to use at most 1,000 to 10,000 samples for the inverse warp function. For
example, if the result will be 1 minute of sound, use a sample rate of 3000 samples / 60 seconds =
50 samples/second. Because Nyquist has no advance information about the warp function, the
inverse warp function sample rate must be provided as a parameter. When in doubt, just try
something and let your ears be the judge.

(integrate signal)
Computes the integral of signal. The start time, sample rate, etc. are taken from signal.

(slope signal)
Computes the first derivative (slope) of signal. The start time, sample rate, etc. are taken from
signal.

5.2.2.1. Oscillators

(osc pitch [duration table phase])
Returns a sound which is the table oscillated at pitch for the given duration, starting with the
phase (in degrees). Defaults are: duration 1.0 (second), table *table*, phase 0.0. The
default value of *table* is a sinusoid. Duration is stretched by *warp* and *sustain*,
amplitude is nominally 1, but scaled by *loudness*, the start time is logical time 0,
transformed by *warp*, and the sample rate is *sound-srate*. The effect of time-warping
is to warp the starting and ending times only; the signal has a constant unwarped frequency. Note
1: table is a list of the form

(sound pitch-number periodic)

where the first element is a sound, the second is the pitch of the sound (this is not redundant,
because the sound may represent any number of periods), and the third element is T if the sound
is one period of a periodic signal, or nil if the sound is a sample that should not be looped. The
maximum table size is set by max_table_len in sound.h, and is currently set to 1,000,000.
Note 2: in the current implementation, it is assumed that the output should be periodic. See
snd-down and snd-up for resampling one-shot sounds to a desired sample rate. A future
version of osc will handle both cases. Note 3: When osc is called, memory is allocated for the
table, and samples are copied from the sound (the first element of the list which is the table
parameter) to the memory. Every instance of osc has a private copy of the table, so the total
storage can become large in some cases, for example in granular synthesis with many instances of
osc. In some cases, it may make sense to use snd-flatten (see Section 5.1.3) to cause the

Page 46 NYQUIST MANUAL

sound to be fully realized, after which the osc and its table memory can be reclaimed by garbage
collection. The partial function (see below) does not need a private table and does not use
much space.

(partial pitch env)
Returns a sinusoid at the indicated pitch; the sound is multiplied by env. The start time and
duration are taken from env, which is of course subject to transformations. The sample rate is
sound-srate. The partial function is faster than osc.

(sine pitch [duration])
Returns a sinusoid at the indicated pitch. The sample rate is *sound-srate*. This function is
like osc with respect to transformations. The sine function is faster than osc.

(hzosc hz [table phase])
Returns a sound which is the table oscillated at hz starting at phase degrees. The default table is
table and the default phase is 0.0. The default duration is 1.0, but this is stretched as in
osc (see above). The hz parameter may be a SOUND, in which case the duration of the result is
the duration of hz. The sample rate is *sound-srate*.

(osc-saw hz)
Returns a sawtooth waveshape at the indicated frequency (in Hertz). The sample rate is
sound-srate. The hz parameter may be a sound as in hzosc (see above).

(osc-tri hz)
Returns a triangle waveshape at the indicated frequency (in Hertz). The sample rate is
sound-srate. The hz parameter may be a sound as in hzosc (see above).

(osc-pulse hz bias [compare-shape])
Returns a square pulse with variable width at the indicated frequency (in Hertz). The bias
parameter controls the pulse width and should be between -1 and +1, giving a pulse width from
0% (always at -1) to 100% (always at +1). When bias is zero, a square wave is generated. Bias
may be a SOUND to create varying pulse width. If bias changes rapidly, strange effects may
occur. The optional compare-shape defaults to a hard step at zero, but other shapes may be used
to achieve non-square pulses. The osc-pulse behavior is written in terms of other behaviors
and defined in the file nyquist.lsp using just a few lines of code. Read the code for the
complete story.

(amosc pitch modulation [table phase])
Returns a sound which is table oscillated at pitch. The output is multiplied by modulation for the
duration of the sound modulation. osc-table defaults to *table*, and phase is the starting
phase (default 0.0 degrees) within osc-table. The sample rate is *sound-srate*.

(fmosc pitch modulation [table phase])
Returns a sound which is table oscillated at pitch plus modulation for the duration of the sound
modulation. osc-table defaults to *table*, and phase is the starting phase (default 0.0 degrees)
within osc-table. The modulation is expressed in hz, e.g. a sinusoid modulation signal with an
amplitude of 1.0 (2.0 peak to peak), will cause a +/– 1.0 hz frequency deviation in sound.
Negative frequencies are correctly handled. The sample rate is *sound-srate*.

(buzz n pitch modulation)
Returns a sound with n harmonics of equal amplitude and a total amplitude of 1.0, using a well-
known function of two cosines. If n (an integer) is less than 1, it is set to 1. Aliasing will occur if
n is too large. The duration is determined by the duration of the sound modulation, which is a
frequency modulation term expressed in Hz (see Section 5.2.2.1). Negative frequencies are
correctly handled. The sample rate is *sound-srate*.

(pluck pitch [duration] [final-amplitude])
Returns a sound at the given pitch created using a modified Karplus-Strong plucked string
algorithm. The tone decays from an amplitude of about 1.0 to about final-amplitude in duration
seconds. The default values are to decay to 0.001 (-60dB) in 1 second. The sample rate is

NYQUIST FUNCTIONS Page 47

sound-srate.

(siosc pitch modulation tables)
Returns a sound constructed by interpolating through a succession of periodic waveforms. The
frequency is given (in half steps) by pitch to which a modulation signal (in hz) is added, exactly
as in fmosc. The tables specify a list of waveforms as follows: (table0 time1 table2 ... timeN
tableN), where each table is a sound representing one period. Each time is a time interval
measured from the starting time. The time is scaled by the nominal duration (computed using
(local-to-global (get-sustain))) to get the actual time. Note that this implies linear
stretching rather than continuous timewarping of the interpolation or the breakpoints. The
waveform is table0 at the starting time, table1 after time1 (scaled as described), and so on. The
duration and logical stop time is given by modulation. If modulation is shorter than timeN, then
the full sequence of waveforms is not used. If modulation is longer than timeN, tableN is used
after timeN without further interpolation.

(sampler pitch modulation [sample npoints])
Returns a sound constructed by reading a sample from beginning to end and then splicing on
copies of the same sound from a loop point to the end. The pitch and modulation parameters are
used as in fmosc described above. The optional sample (which defaults to the global variable
table is a list of the form

(sound pitch-number loop-start)

where the first element is a sound containing the sample, the second is the pitch of the sample,
and the third element is the time of the loop point. If the loop point is not in the bounds of the
sound, it is set to zero. The optional npoints specifies how many points should be used for
sample interpolation. Currently this parameter defaults to 2 and only 2-point (linear)
interpolation is implemented. It is an error to modulate such that the frequency is negative. Note
also that the loop point may be fractional. The sample rate is *sound-srate*.

5.2.2.2. Piece-wise Approximations
There are a number of related behaviors for piece-wise approximations to functions. The simplest of

these, pwl was mentioned earlier in the manual. It takes a list of breakpoints, assuming an initial point at
(0, 0), and a final value of 0. An analogous piece-wise exponential function, pwe, is provided. Its
implicit starting and stopping values are 1 rather than 0. Each of these has variants. You can specify the
initial and final values (instead of taking the default). You can specify time in intervals rather than
cummulative time. Finally, you can pass a list rather than an argument list. This leads to 16 versions:

Page 48 NYQUIST MANUAL

Piece-wise Linear Functions:
Cummulative Time:

Default initial point at (0, 0), final value at 0:
pwl
pwl-list

Explicit initial value:
pwlv
pwlv-list

Relative Time:
Default initial point at (0, 0), final value at 0:

pwlr
pwlr-list

Explicit initial value:
pwlvr
pwlvr-list

Piece-wise Exponential Functions:
Cummulative Time:

Default initial point at (0, 1), final value at 1:
pwe
pwe-list

Explicit initial value:
pwev
pwev-list

Relative Time:
Default initial point at (0, 1), final value at 1:

pwer
pwer-list

Explicit initial value:
pwevr
pwevr-list

All of these functions are implemented in terms of pwl (see nyquist.lsp for the implementations.
There are infinite opportunities for errors in these functions: if you leave off a data point, try to specify
points in reverse order, try to create an exponential that goes to zero or negative values, or many other bad
things, the behavior is not well-defined. Nyquist should not crash, but Nyquist does not necessarily
attempt to report errors at this time.

(pwl t1 l1 t2 l2 ... tn)
Creates a piece-wise linear envelope with breakpoints at (0, 0), (t1, l1), (t2, l2), ... (tn, 0). The
breakpoint times are scaled linearly by the value of *sustain* (if *sustain* is a SOUND, it
is evaluated once at the starting time of the envelope). Each breakpoint time is then mapped
according to *warp*. The result is a linear interpolation (unwarped) between the breakpoints.
The sample rate is *control-srate*. Breakpoint times are quantized to the nearest sample
time. If you specify one or more breakpoints withing one sample period, pwl attempts to give a
good approximation to the specified function. In particular, if two breakpoints are simultaneous,
pwl will move one of them to an adjacent sample, producing a steepest possible step in the
signal. The exact details of this ‘‘breakpoint munging’’ is subject to change in future versions.
Please report any cases where breakpoint lists give unexpected behaviors. The author will try to
apply the ‘‘principle of least surprise’’ to the design. Note that the times are relative to 0; they
are not durations of each envelope segment.

(pwl-list breakpoints)
If you have a list of breakpoints, you can use apply to apply the pwl function to the
breakpoints, but if the list is very long (hundreds or thousands of points), you might get a stack
overflow because XLISP has a fixed-size argument stack. Instead, call pwl-list, passing one

NYQUIST FUNCTIONS Page 49

argument, the list of breakpoints.

(pwlv l1 t2 l2 t3 t3 ... tn ln)
Creates a piece-wise linear envelope with breakpoints at (0, l1), (t2, l2), etc., ending with (tn, ln.
Otherwise, the behavior is like that of pwl.

(pwlv-list breakpoints)
A version of pwlv that takes a single list of breakpoints as its argument. See pwl-list above
for the rationale.

(pwlr i1 l1 i2 l2 ... in)
Creates a piece-wise linear envelope with breakpoints at (0, 0), (t1, l1), (t2, l2), ... (tn, 0), where tj
is the sum of i1 through ij. In other words, the breakpoint times are specified in terms of intervals
rather than cummulative time. Otherwise, the behavior is like that of pwl.

(pwlr-list breakpoints)
A version of pwlr that takes a single list of breakpoints as its argument. See pwl-list above
for the rationale.

(pwlvr l1 i2 l2 i3 i3 ... in ln)
Creates a piece-wise linear envelope with breakpoints at (0, l1), (t2, l2), etc., ending with (tn, ln,
where tj is the sum of i2 through ij. In other words, the breakpoint times are specified in terms of
intervals rather than cummulative time. Otherwise, the behavior is like that of pwlv.

(pwlvr-list breakpoints)
A version of pwlvr that takes a single list of breakpoints as its argument. See pwl-list
above for the rationale.

(pwe t1 l1 t2 l2 ... tn)
Creates a piece-wise exponential envelope with breakpoints at (0, 1), (t1, l1), (t2, l2), ... (tn, 1).
Exponential segments means that the ratio of values from sample to sample is constant within the
segment. (The current implementation actually takes the log of each value, computes a piece-
wise exponential from the points using pwl, then exponentiates each resulting sample. A faster
implementation is certainly possible!) Breakpoint values (lj) must be greater than zero.
Otherwise, this function is similar to pwl, including stretch by *sustain*, mapping according
to *warp*, sample rate based on *control-srate*, and "breakpoint munging" (see pwl
described above). Default initial and final values are of dubious value with exponentials. See
pwev below for the function you are probably looking for.

(pwe-list breakpoints)
A version of pwe that takes a single list of breakpoints as its argument. See pwl-list above
for the rationale.

(pwev l1 t2 l2 t3 t3 ... tn ln)
Creates a piece-wise exponential envelope with breakpoints at (0, l1), (t2, l2), etc., ending with (tn,
ln. Otherwise, the behavior is like that of pwe.

(pwev-list breakpoints)
A version of pwev that takes a single list of breakpoints as its argument. See pwl-list above
for the rationale.

(pwer i1 l1 i2 l2 ... in)
Creates a piece-wise exponential envelope with breakpoints at (0, 1), (t1, l1), (t2, l2), ... (tn, 1),
where tj is the sum of i1 through ij. In other words, the breakpoint times are specified in terms of
intervals rather than cummulative time. Otherwise, the behavior is like that of pwe. Consider
using pwerv instead of this one.

(pwer-list breakpoints)
A version of pwer that takes a single list of breakpoints as its argument. See pwl-list above
for the rationale.

Page 50 NYQUIST MANUAL

(pwevr l1 i2 l2 i3 i3 ... in ln)
Creates a piece-wise exponential envelope with breakpoints at (0, l1), (t2, l2), etc., ending with (tn,
ln, where tj is the sum of i2 through ij. In other words, the breakpoint times are specified in terms
of intervals rather than cummulative time. Otherwise, the behavior is like that of pwev. Note
that this is similar to the csound GEN05 generator. Which is uglier, GEN05 or pwevr?

(pwevr-list breakpoints)
A version of pwevr that takes a single list of breakpoints as its argument. See pwl-list
above for the rationale.

5.2.2.3. Filter Behaviors

(alpass sound decay hz [minhz])
Applies an all-pass filter to sound. This all-pass filter creates a delay effect without the
resonances of a comb filter. The decay time of the filter is given by decay. The hz parameter
must be a number or sound greater than zero. It is used to compute delay, which is then rounded
to the nearest integer number of samples (so the frequency is not always exact. Higher sampling
rates yield better delay resolution.) The decay may be a sound or a number. In either case, it
must also be positive. (Implementation note: an exponentiation is needed to convert decay into
the feedback parameter, and exponentiation is typically more time-consuming than the filter
operation itself. To get high performance, provide decay at a low sample rate.) The resulting
sound will have the start time, sample rate, etc. of sound. If hz is of type SOUND, the delay may
be time-varying. Linear interpolation is then used for fractional sample delay, but it should be
noted that linear interpolation implies a low-pass transfer function. Thus, this filter may behave
differently with a constant SOUND than it does with a FLONUM value for hz. In addition, if hz is
of type SOUND, then minhz is required. The hz parameter will be clipped to be greater than minhz,
placing an upper bound on the delay buffer length.

(comb sound decay hz)
Applies a comb filter to sound. A comb filter emphasizes (resonates at) frequencies that are
multiples of a hz. The decay time of the resonance is given by decay. This is a variation on
feedback-delay (see below). The hz parameter must be a number greater than zero. It is
used to compute delay, which is then rounded to the nearest integer number of samples (so the
frequency is not always exact. Higher sampling rates yield better delay resolution.) The decay
may be a sound or a number. In either case, it must also be positive. (Implementation note: an
exponentiation is needed to convert decay into the feedback parameter for feedback-delay,
and exponentiation is typically more time-consuming than the filter operation itself. To get high
performance, provide decay at a low sample rate.) The resulting sound will have the start time,
sample rate, etc. of sound.

(congen gate risetime falltime)
Implements an analog synthesizer-style contour generator. The input gate normally goes from 0.0
to 1.0 to create an attack and from 1.0 to 0.0 to start a release. During the attack (output is
increasing), the output converges half-way to gate in risetime (a FLONUM) seconds. During the
decay, the half-time is falltime seconds. The sample rate, start time, logical stop, and terminate
time all come from gate. If you want a nice decay, be sure that the gate goes to zero and stays
there for awhile before gate terminates, because congen (and all Nyquist sounds) go
immediately to zero at termination time. For example, you can use pwl to build a pulse followed
by some zero time:

(pwl 0 1 duty 1 duty 0 1)

Assuming duty is less than 1.0, this will be a pulse of duration duty followed by zero for a total
duration of 1.0.

(congen (pwl 0 1 duty 1 duty 0 1) 0.01 0.05)

will have a duration of 1.0 because that is the termination time of the pwl input. The decaying

NYQUIST FUNCTIONS Page 51

release of the resulting envelope will be truncated to zero at time 1.0. (Since the decay is
theoretically infinite, there is no way to avoid truncation, although you could multiply by another
envelope that smoothly truncates to zero in the last millisecond or two to get both an exponential
decay and a smooth final transition to zero.)

(convolve sound response)
Convolves two signals. The first can be any length, but the computation time per sample and the
total space required are proportional to the length of response.

(feedback-delay sound delay feedback)
Applies feedback delay to sound. The delay must be a number (in seconds). It is rounded to the
nearest sample to determine the length of the delay. The sample rate is the maximum from sound
and feedback (if feedback is also a sound). The amound of feedback should be less than one to
avoid an exponential increase in amplitude. The start time and stop time, and logical stop time
are taken from sound. Since output is truncated at the stop time of sound, you may want to
append some silence to sound to give the filter time to decay.

(lp sound cutoff)
Filters sound using a first-order Butterworth low-pass filter. Cutoff may be a float or a signal (for
time-varying filtering) and expresses hertz. Filter coefficients (requiring trig functions) are
recomputed at the sample rate of cutoff. The resulting sample rate, start time, etc. are taken from
sound.

(tone sound cutoff)
No longer defined; use lp instead, or define it by adding (setfn tone lp) to your program.

(hp sound cutoff)
Filters sound using a first-order Butterworth high-pass filter. Cutoff may be a float or a signal
(for time-varying filtering) and expresses hertz. Filter coefficients (requiring trig functions) are
recomputed at the sample rate of cutoff. This filter is an exact complement of lp.

(atone sound cutoff)
No longer defined; use hp instead, or define it by adding (setfn atone hp) to your
program.

(reson sound center bandwidth n)
Apply a resonating filter to sound with center frequency center (in hertz), which may be a float or
a signal. Bandwidth is the filter bandwidth (in hertz), which may also be a signal. Filter
coefficients (requiring trig functions) are recomputed at each new sample of either center or
bandwidth, and coefficients are not interpolated. The last parameter n specifies the type of
normalization as in Csound: A value of 1 specifies a peak amplitude response of 1.0; all
frequencies other than hz are attenuated. A value of 2 specifies the overall RMS value of the
amplitude response is 1.0; thus filtered white noise would retain the same power. A value of zero
specifies no scaling. The resulting sample rate, start time, etc. are taken from sound.

One application of reson is to simulate resonances in the human vocal tract. See
demos/voice_synthesis.htmfor sample code and documentation.

(areson sound center bandwidth n)
The areson filter is an exact complement of reson such that if both are applied to the same
signal with the same parameters, the sum of the results yeilds the original signal.

(shape signal table origin)
A waveshaping function. Use table as a function; apply the function to each sample of signal to
yield a new sound. Signal should range from -1 to +1. Anything beyond these bounds is clipped.
Table is also a sound, but it is converted into a lookup table (similar to table-lookup oscillators).
The origin is a FLONUM and gives the time which should be considered the origin of table.
(This is important because table cannot have values at negative times, but signal will often have
negative values. The origin gives an offset so that you can produce suitable tables.) The output
at time t is:

Page 52 NYQUIST MANUAL

table(origin + clip(signal(t))

where clip(x) = max(1, min(-1, x)). (E.g. if table is a signal defined over the interval [0, 2], then
origin should be 1.0. The value of table at time 1.0 will be output when the input signal is zero.)
The output has the same start time, sample rate, etc. as signal. The shape function will also
accept multichannel signals and tables.

Further discussion and examples can be found in demos/distortion.htm. The shape function is
also used to map frequency to amplitude to achieve a spectral envelope for Shepard tones in
demos/shepard.lsp.

(biquad signal b0 b1 b2 a0 a1 a2)
A fixed-parameter biquad filter. All filter coefficients are FLONUMs. See also lowpass2,
highpass2, bandpass2, notch2, allpass2, eq-lowshelf, eq-highshelf,
eq-band, lowpass4, lowpass6, highpass4, and highpass8 in this section for
convenient variations based on the same filter. The equations for the filter are: zn = sn + a1 * zn-1
+ a2 * zn-2, and yn = zn * b0 + zn-1 * b1 + zn-2 * b2.

(biquad-m signal b0 b1 b2 a0 a1 a2)
A fixed-parameter biquad filter with Matlab sign conventions for a0, a1, and a2. All filter
coefficients are FLONUMs.

(lowpass2 signal hz [q])
A fixed-parameter, second-order lowpass filter based on snd-biquad. The cutoff frequency is
given by hz (a FLONUM) and an optional Q factor is given by q (a FLONUM).

(highpass2 signal hz [q])
A fixed-parameter, second-order highpass filter based on snd-biquad. The cutoff frequency is
given by hz (a FLONUM) and an optional Q factor is given by q (a FLONUM).

(bandpass2 signal hz [q])
A fixed-parameter, second-order bandpass filter based on snd-biquad. The center frequency is
given by hz (a FLONUM) and an optional Q factor is given by q (a FLONUM).

(notch2 signal hz [q])
A fixed-parameter, second-order notch filter based on snd-biquad. The center frequency is
given by hz (a FLONUM) and an optional Q factor is given by q (a FLONUM).

(allpass2 signal hz [q])
A fixed-parameter, second-order allpass filter based on snd-biquad. The frequency is given by
hz (a FLONUM) and an optional Q factor is given by q (a FLONUM).

(eq-lowshelf signal hz gain [slope])
A fixed-parameter, second-order bass shelving equalization (EQ) filter based on snd-biquad.
The hz parameter (a FLONUM)is the halfway point in the transition, and gain (a FLONUM) is the
bass boost (or cut) in dB. The optional slope (a FLONUM) is 1.0 by default, and response becomes
peaky at values greater than 1.0.

(eq-highshelf signal hz gain [slope])
A fixed-parameter, second-order treble shelving equalization (EQ) filter based on snd-biquad.
The hz parameter (a FLONUM)is the halfway point in the transition, and gain (a FLONUM) is the
treble boost (or cut) in dB. The optional slope (a FLONUM) is 1.0 by default, and response
becomes peaky at values greater than 1.0.

(eq-band signal hz gain width)
A fixed- or variable-parameter, second-order midrange equalization (EQ) filter based on
snd-biquad, snd-eqbandcv and snd-eqbandvvv. The hz parameter (a FLONUM) is the
center frequency, gain (a FLONUM) is the boost (or cut) in dB, and width (a FLONUM) is the
half-gain width in octaves. Alternatively, hz, gain, and width may be SOUNDs, but they must all
have the same sample rate, e.g. they should all run at the control rate or at the sample rate.

(lowpass4 signal hz)

NYQUIST FUNCTIONS Page 53

A four-pole Butterworth lowpass filter. The cutoff frequency is hz (a FLONUM).

(lowpass6 signal hz)
A six-pole Butterworth lowpass filter. The cutoff frequency is hz (a FLONUM).

(lowpass8 signal hz)
An eight-pole Butterworth lowpass filter. The cutoff frequency is hz (a FLONUM).

(highpass4 signal hz)
A four-pole Butterworth highpass filter. The cutoff frequency is hz (a FLONUM).

(highpass6 signal hz)
A six-pole Butterworth highpass filter. The cutoff frequency is hz (a FLONUM).

(highpass8 signal hz)
An eight-pole Butterworth highpass filter. The cutoff frequency is hz (a FLONUM).

(tapv sound offset vardelay maxdelay)
A delay line with a variable position tap. Identical to snd-tapv. See it for details (5.6.2).

5.2.2.4. More Behaviors

(clip sound peak)
Hard limit sound to the given peak, a positive number. The samples of sound are constrained
between an upper value of peak and a lower value of –()peak. If sound is a number, clip will
return sound limited by peak. If sound is a multichannel sound, clip returns a multichannel
sound where each channel is clipped. The result has the type, sample rate, starting time, etc. of
sound.

(s-abs sound)
A generalized absolute value function. If sound is a SOUND, compute the absolute value of each
sample. If sound is a number, just compute the absolute value. If sound is a multichannel sound,
return a multichannel sound with s-abs applied to each element. The result has the type, sample
rate, starting time, etc. of sound.

(s-sqrt sound)
A generalized square root function. If sound is a SOUND, compute the square root of each
sample. If sound is a number, just compute the square root. If sound is a multichannel sound,
return a multichannel sound with s-sqrt applied to each element. The result has the type,
sample rate, starting time, etc. of sound. In taking square roots, if an input sample is less than
zero, the corresponding output sample is zero. This is done because the square root of a negative
number is undefined.

(s-exp sound)
A generalized exponential function. If sound is a SOUND, compute ex for each sample x. If
sound is a number x, just compute ex. If sound is a multichannel sound, return a multichannel
sound with s-exp applied to each element. The result has the type, sample rate, starting time,
etc. of sound.

(s-log sound)
A generalized natural log function. If sound is a SOUND, compute ln(x) for each sample x. If
sound is a number x, just compute ln(x). If sound is a multichannel sound, return a multichannel
sound with s-log applied to each element. The result has the type, sample rate, starting time,
etc. of sound. Note that the ln of 0 is undefined (some implementations return negative infinity),
so use this function with care.

(s-max sound1 sound2)
Compute the maximum of two functions, sound1 and sound2. This function also accepts numbers
and multichannel sounds and returns the corresponding data type. The start time of the result is
the maximum of the start times of sound1 and sound2. The logical stop time and physical stop

Page 54 NYQUIST MANUAL

time of the result is the minimum of the logical stop and physical stop times respectively of
sound1 and sound2. Note, therefore, that the result value is zero except within the bounds of both
input sounds.

(s-min sound1 sound2)
Compute the minimum of two functions, sound1 and sound2. This function also accepts numbers
and multichannel sounds and returns the corresponding data type. The start time of the result is
the maximum of the start times of sound1 and sound2. The logical stop time and physical stop
time of the result is the minimum of the logical stop and physical stop times respectively of
sound1 and sound2. Note, therefore, that the result value is zero except within the bounds of both
input sounds.

(osc-note pitch [duration env loud table])
Same as osc, but osc-note multiplies the result by env. The env may be a sound, or a list
supplying (t1 t2 t4 l1 l2 l3). The result has a sample rate of *sound-srate*.

(quantize sound steps)
Quantizes sound as follows: sound is multiplied by steps and rounded to the nearest integer. The
result is then divided by steps. For example, if steps is 127, then a signal that ranges from -1 to +1
will be quantized to 255 levels (127 less than zero, 127 greater than zero, and zero itself). This
would match the quantization Nyquist performs when writing a signal to an 8-bit audio file. The
sound may be multi-channel.

(ramp [duration])
Returns a linear ramp from 0 to 1 over duration (default is 1). The function actually reaches 1 at
duration, and therefore has one extra sample, making the total duration be duration +
1/*Control-srate*. See Figure 6 for more detail. Ramp is unaffected by the sustain
transformation. The effect of time warping is to warp the starting and ending times only. The
ramp itself is unwarped (linear). The sample rate is *control-srate*.

(rms sound [rate window-size])
Computes the RMS of sound using a square window of size window-size. The result has a sample
rate of rate. The default value of rate is 100 Hz, and the default window size is 1/rate seconds
(converted to samples). The rate is a FLONUM and window-size is a FIXNUM.

(recip sound)
A generalized reciprocal function. If sound is a SOUND, compute 1/x for each sample x. If
sound is a number x, just compute 1/x. If sound is a multichannel sound, return a multichannel
sound with recip applied to each element. The result has the type, sample rate, starting time,
etc. of sound. Note that the reciprocal of 0 is undefined (some implementations return infinity),
so use this function with care on sounds. Division of sounds is accomplished by multiplying by
the reciprocal. Again, be careful not to divide by zero.

(s-rest [duration])
Create silence (zero samples) for the given duration at the sample rate *sound-srate*.
Default duration is 1.0 sec, and the sound is transformed in time according to *warp*. Note:
rest is a Lisp function that is equivalent to cdr. Be careful to use s-rest when you need a
sound!

(noise [duration])
Generate noise with the given duration. Duration (default is 1.0) is transformed according to
warp. The sample rate is *sound-srate* and the amplitude is +/- *loud*.

(yin sound minstep maxstep stepsize)
Fundamental frequency estimation (pitch detection. Use the YIN algorithm to estimate the
fundamental frequency of sound, which must be a SOUND. The minstep, a FLONUM, is the
minimum frequency considered (in steps), maxstep, a FLONUM, is the maximum frequency
considered (in steps), and stepsize, a FIXNUM, is the desired hop size. The result is a ‘‘stereo’’
signal, i.e. an array of two SOUNDs, both at the same sample rate, which is approximately the

NYQUIST FUNCTIONS Page 55

1

0
1

1

0
1

(pwl 1 1 1) (ramp)

Figure 6: Ramps generated by pwl and ramp functions. The pwl version ramps
toward the breakpoint (1, 1), but in order to ramp back to zero at breakpoint (1, 0), the
function never reaches an amplitude of 1. If used at the beginning of a seq construct,
the next sound will begin at time 1. The ramp version actually reaches breakpoint (1,
1); notice that it is one sample longer than the pwl version. If used in a sequence, the
next sound after ramp would start at time 1 + P, where P is the sample period.

sample rate of sound divided by stepsize. The first SOUND consists of frequency estimates. The
second sound consists of values that measure the confidence or reliability of the frequency
estimate. A small value (less than 0.1) indicates fairly high confidence. A larger value indicates
lower confidence. This number can also be thought of as a ratio of non-periodic power to periodic
power. When the number is low, it means the signal is highly periodic at that point in time, so the
period estimate will be reliable. Hint #1: See Alain de Cheveigne and Hideki Kawahara’s article
"YIN, a Fundamental Frequency Estimator for Speech and Music" in the Journal of the Acoustic
Society of America, April 2002 for details on the yin algorithm. Hint #2: Typically, the stepsize
should be at least the expected number of samples in one period so that the fundamental
frequency estimates are calculated at a rate far below the sample rate of the signal. Frequency
does not change rapidly and the yin algorithm is fairly slow. To optimize speed, you may want to
use less than 44.1 kHz sample rates for input sounds. Yin uses interpolation to achieve potentially
fractional-sample-accurate estimates, so higher sample rates do not necessarily help the algorithm
and definitely slow it down. The computation time is O(n2) per estimate, where n is the number
of samples in the longest period considered. Therefore, each increase of minstep by 12 (an
octave) gives you a factor of 4 speedup, and each decrease of the sample rate of sound by a factor
of two gives you another factor of 4 speedup. Finally, the number of estimates is inversely
proportional to stepsize. Hint #3: Use snd-srate (see Section 5.1.3) to get the exact sample
rate of the result, which will be the sample rate of sound divided by stepsize. E.g. (snd-srate
(aref yin-output 0)), where yin-output is a result returned by yin, will be the
sample rate of the estimates.

5.3. Transformations
These functions change the environment that is seen by other high-level functions. Note that these

changes are usually relative to the current environment. There are also ‘‘absolute’’ versions of each
transformation function, with the exception of seq, seqrep, sim, and simrep. The ‘‘absolute’’
versions (starting or ending with ‘‘abs’’) do not look at the current environment, but rather set an
environment variable to a specific value. In this way, sections of code can be insulated from external

Page 56 NYQUIST MANUAL

transformations.

(abs-env beh)
Compute beh in the default environment. This is useful for computing waveform tables and
signals that are ‘‘outside’’ of time. For example, (at 10.0 (abs-env (my-beh))) is
equivalent to (abs-env (my-beh)) because abs-env forces the default environment.

(at time beh)
Evaluate beh with *warp* shifted by time.

(at-abs time beh)
Evaluate beh with *warp* shifted so that local time 0 maps to time.

(continuous-control-warp beh)
Applies the current warp environment to the signal returned by beh. The result has the default
control sample rate *control-srate*. Linear interpolation is currently used.
Implementation: beh is first evaluated without any shifting, stretching, or warping. The result is
functionally composed with the inverse of the environment’s warp function.

(continuous-sound-warp beh)
Applies the current warp environment to the signal returned by beh. The result has the default
sound sample rate *sound-srate*. Linear interpolation is currently used. See
continuous-control-warp for implementation notes.

(control-srate-abs srate beh)
Evaluate beh with *control-srate*set to sample rate srate. Note: there is no ‘‘relative’’
version of this function.

(extract start stop beh)
Returns a sound which is the portion of beh between start and stop. Note that this is done relative
to the current *warp*. The result is shifted to start according to *warp*, so normally the result
will start without a delay of start.

(extract-abs start stop beh)
Returns a sound which is the portion of beh between start and stop, independent of the current
warp. The result is shifted to start according to *warp*.

(loud volume beh)
Evaluates beh with *loud* incremented by volume. (Recall that *loud* is in decibels, so
increment is the proper operation.)

(loud-abs volume beh)
Evaluates beh with *loud* set to volume.

(sound-srate-abs srate beh)
Evaluate beh with *sound-srate* set to sample rate srate. Note: there is no ‘‘relative’’
version of this function.

(stretch factor beh)
Evaluates beh with *warp* scaled by factor. The effect is to ‘‘stretch’’ the result of beh (under
the current environment) by factor. See Chapter 3 for more information.

(stretch-abs factor beh)
Evaluates beh with *warp* set to a linear time transformation where each unit of logical time
maps to factor units of real time. The effect is to stretch the nominal behavior of beh (under the
default global environment) by factor. See Chapter 3 for more information.

(sustain factor beh)
Evaluates beh with *sustain* scaled by factor. The effect is to ‘‘stretch’’ the result of beh
(under the current environment) by factor; however, the logical stop times are not stretched.
Therefore, the overall duration of a sequence is not changed, and sounds will tend to overlap if
sustain is greater than one (legato) and be separated by silence if *sustain* is less than

NYQUIST FUNCTIONS Page 57

one.

(sustain-abs factor beh)
Evaluates beh with *sustain* set to factor. (See sustain, above.)

(transpose amount beh)
Evaluates beh with *transpose* shifted by amount. The effect is relative transposition by
amount semitones.

(transpose-abs amount beh)
Evaluates beh with *transpose* set to amount. The effect is the transposition of the nominal
pitches in beh (under the default global environment) by amount.

(warp fn beh)
Evaluates beh with *warp* modified by fn. The idea is that beh and fn are written in the same
time system, and fn warps that time system to local time. The current environment already
contains a mapping from local time to global (real) time. The value of *warp* in effect when
beh is evaluated is the functional composition of the initial *warp* with fn.

(warp-abs fn beh)
Evaluates beh with *warp* set to fn. In other words, the current *warp* is ignored and not
composed with fn to form the new *warp*.

5.4. Combination and Time Structure
These behaviors combine component behaviors into structures, including sequences (melodies),

simultaneous sounds (chords), and structures based on iteration.

(seq beh1 [beh2 ...])
Evaluates the first behavior beh1 according to *time* and each successive behavior at the
logical-stop time of the previous one. The results are summed to form a sound whose
logical-stop is the logical-stop of the last behavior in the sequence. Each behavior
can result in a multichannel sound, in which case, the logical stop time is considered to be the
maximum logical stop time of any channel. The number of channels in the result is the number
of channels of the first behavior. If other behaviors return fewer channels, new channels are
created containing constant zero signals until the required number of channels is obtained. If
other behaviors return a simple sound rather than multichannel sounds, the sound is automatically
assigned to the first channel of a multichannel sound that is then filled out with zero signals. If
another behavior returns more channels than the first behavior, the error is reported and the
computation is stopped. Sample rates are converted up or down to match the sample rate of the
first sound in a sequence.

(seqrep (var limit) beh)
Iteratively evaluates beh with the atom var set with values from 0 to limit-1, inclusive. These
sounds are placed sequentially in time as if by seq. The symbol var is a read-only local variable
to beh. Assignments are not restricted or detected, but may cause a run-time error or crash.

(sim [beh1 beh2 ...])
Returns a sound which is the sum of the given behaviors evaluated with current value of
warp. If behaviors return multiple channel sounds, the corresponding channels are added. If
the number of channels does not match, the result has the maximum. For example, if a two-
channel sound [L, R] is added to a four-channel sound [C1, C2, C3, C4], the result is [L + C1, R
+ C2, C3, C4]. Arguments to sim may also be numbers. If all arguments are numbers, sim is
equivalent (although slower than) the + function. If a number is added to a sound, snd-offset
is used to add the number to each sample of the sound. The result of adding a number to two or
more sounds with different durations is not defined. Use const to coerce a number to a sound
of a specified duration. An important limitation of sim is that it cannot handle hundreds of
behaviors due to a stack size limitation in XLISP. To compute hundreds of sounds (e.g. notes) at

Page 58 NYQUIST MANUAL

specified times, see timed-seq, below. See also sum below.

(simrep (var limit) beh)
Iteratively evaluates beh with the atom var set with values from 0 to limit-1, inclusive. These
sounds are then placed simultaneously in time as if by sim.

(trigger s beh)
Returns a sound which is the sum of instances of the behavior beh. One instance is created each
time SOUND s makes a transition from less than or equal to zero to greater than zero. (If the first
sample of s is greater than zero, an instance is created immediately.) The sample rate of s and all
behaviors must be the same, and the behaviors must be (monophonic) SOUNDs. This function is
particularly designed to allow behaviors to be invoked in real time by making s a function of a
Nyquist slider, which can be controlled by a graphical interface or by OSC messages. See
snd-slider in Section 5.6.1.

(set-logical-stop beh time)
Returns a sound with time as the logical stop time.

(sum a [b c ...])
Returns the sum of a, b, c, ..., allowing mixed addition of sounds, multichannel sounds and
numbers. Identical to sim.

(mult a [b c ...])
Returns the product of a, b, c, ..., allowing mixed multiplication of sounds, multichannel sounds
and numbers.

(diff a b)
Returns the difference between a and b. This function is defined as (sum a (prod -1 b)).

(timed-seqscore)
Computes sounds from a note list or ‘‘score.’’ The score is of the form: ‘((time1 stretch1
beh1) (time2 stretch2 beh2) ...), where timeN is the starting time, stretchN is the stretch
factor, and behN is the behavior. Note that score is normally a quoted list! The times must be in
increasing order, and each behN is evaluated using lisp’s eval, so the behN behaviors cannot
refer to local parameters or local variables. The advantage of this form over seq is that the
behaviors are evaluated one-at-a-time which can take much less stack space and overall memory.
One special ‘‘behavior’’ expression is interpreted directly by timed-seq:
(SCORE-BEGIN-END) is ignored, not evaluated as a function. Normally, this special behavior
is placed at time 0 and has two parameters: the score start time and the score end time. These are
used in Xmusic functions. If the behavior has a :pitch keyword parameter which is a list, the
list represents a chord, and the expression is replaced by a set of behaviors, one for each note in
the chord. It follows that if :pitch is nil, the behavior represents a rest and is ignored.

5.5. Sound File Input and Output
(play sound)

Play the sound through the DAC. The play function writes a file and plays it. The details of
this are system-dependent, but play is defined in the file system.lsp. The variable
default-sf-dir names a directory into which to save a sound file.

By default, Nyquist will try to normalize sounds using the method named by *autonorm-type*,
which is ’lookahead by default. The lookahead method precomputes and buffers
autonorm-max-samples samples, finds the peak value, and normalizes accordingly. The
’previous method bases the normalization of the current sound on the peak value of the
(entire) previous sound. This might be good if you are working with long sounds that start rather
softly. See Section 4.3 for more details.

If you want precise control over output levels, you should turn this feature off by typing:

NYQUIST FUNCTIONS Page 59

(autonorm-off)

Reenable the automatic normalization feature by typing:
(autonorm-on)

Play normally produces real-time output. The default is to send audio data to the DAC as it is computed
in addition to saving samples in a file. If computation is slower than real-time, output will be
choppy, but since the samples end up in a file, you can type (r) to replay the stored sound.
Real-time playback can be disabled by:

(sound-off)

and reenabled by:
(sound-on)

Disabling real-time playback has no effect on (play-file) or (r).

(play-file filename)
Play the contents of a sound file named by filename. The s-read function is used to read the
file, and unless filename specifies an absolute path or starts with ‘‘.’’, it will be read from
default-sf-dir.

(autonorm-on)
Enable automatic adjustment of a scale factor applied to sounds computed using the play
command.

(autonorm-off)
Disable automatic adjustment of a scale factor applied to sounds computed using the play
command.

(sound-on)
Enable real-time audio output when sound is computed by the the play command.

(sound-off)
Disable real-time audio output when sound is computed by the the play command.

(s-save expression maxlen filename [:format format] [:mode mode] [:bits bits]
[:swap flag] [:play play])
Evaluates the expression, which should result in a sound or an array of sounds, and writes the
result to the given filename. A FLONUM is returned giving the maximum absolute value of all
samples written. (This is useful for normalizing sounds and detecting sample overflow.) If play is
not NIL, the sound will be output through the computer’s audio output system. (:play is not
implemented on all systems; if it is implemented, and filename is NIL, then this will play the file
without also writing a file.) The latency (length of audio buffering) used to play the sound is 0.3s
by default, but see snd-set-latency. If a multichannel sound (array) is written, the channels
are up-sampled to the highest rate in any channel so that all channels have the same sample rate.
The maximum number of samples written per channel is given by maxlen, which allows writing
the initial part of a very long or infinite sound. A header is written according to format, samples
are encoded according to mode, using bits bits/sample, and bytes are swapped if swap is not NIL.
Defaults for these are *default-sf-format*, *default-sf-mode*, and
default-sf-bits. The default for swap is NIL. The bits parameter may be 8, 16, or 32.
The values for the format and mode options are described below:

Format

snd-head-none No header.

snd-head-AIFF AIFF format header.

snd-head-IRCAM IRCAM format header.

snd-head-NeXT 1024-byte NeXT/SUN format header followed by IRCAM header ala
CMIX. Note that the NeXT/SUN format has a header-length field, so it

Page 60 NYQUIST MANUAL

really is legal to have a large header, even though the normal minimal
header is only 24 bytes. The additional space leaves room for maximum
amplitudes, which can be used for normalizing floating-point soundfiles,
and for other data. Nyquist follows the CMIX convention of placing an
IRCAM format header immediately after the NeXT-style header.

snd-head-Wave Microsoft Wave format header.
Mode

snd-head-mode-adpcm ADPCM mode (not supported).

snd-head-mode-pcm signed binary PCM mode.

snd-head-mode-ulaw 8-bit U-Law mode.

snd-head-mode-alaw 8-bit A-Law mode (not supported).

snd-head-mode-float 32-bit floating point mode.

snd-head-mode-upcm unsigned binary PCM mode.
The defaults for format, mode, and bits are as follows:

NeXT and Sun machines: snd-head-NeXT, snd-head-mode-pcm, 16

SGI and Macintosh machines: snd-head-AIFF, snd-head-mode-pcm, 16

(s-read filename [:time-offset offset] [:srate sr] [:dur dur] [:nchans chans]
[:format format] [:mode mode] [:bits n] [:swap flag])
Reads a sound from a file. If a header is detected, the header is used to determine the format of
the file, and header information overrides format information provided by keywords (except for
:time-offset and :dur).

(s-read "mysound.snd" :srate 44100)

specifies a sample rate of 44100 hz, but if the file has a header specifying 22050 hz, the resulting
sample rate will be 22050. The parameters are:

• :time-offset — the amount of time (in seconds) to skip from the beginning of
the file. The default is 0.0.

• :srate — the sample rate of the samples in the file. Default is
default-sf-srate , which is normally 44100.

• :dur — the maximum duration in seconds to read. Default is 10000.

• :nchans — the number of channels to read. It is assumed that samples from each
channel are interleaved. Default is 1.

• :format — the header format. See s-save for details. Default is
default-sf-format, although this parameter is currently ignored.

• :mode — the sample representation, e.g. PCM or float. See s-save for details.
Default is *default-sf-format*.

• :bits — the number of bits per sample. See s-save for details. Default is
default-sf-bits.

• :swap — (T or NIL) swap byte order of each sample. Default is NIL.
If there is an error, for example if :time-offset is greater than the length of the file, then
NIL is returned rather than a sound. Information about the sound is also returned by s-read

NYQUIST FUNCTIONS Page 61

through *rslt*2. The list assigned to *rslt* is of the form: (format channels mode bits
samplerate duration flags byte-offset), which are defined as follows:

• format — the header format. See s-save for details.

• channels — the number of channels.

• mode — the sample representation, e.g. PCM or float. See s-save for details.

• bits — the number of bits per sample.

• samplerate — the sample rate, expressed as a FLONUM.

• duration — the duration of the sound, in seconds.

• flags — The values for format, channels, mode, bits, samplerate, and duration are
initially just the values passed in as parameters or default values to s-read. If a
value is actually read from the sound file header, a flag is set. The flags are:
snd-head-format, snd-head-channels, snd-head-mode,
snd-head-bits, snd-head-srate, and snd-head-dur. For example,

(let ((flags (caddr (cddddr *rslt*))))
(not (zerop (logand flags snd-head-srate))))

tells whether the sample rate was specified in the file. See also sf-info below.

• byte-offset — the byte offset into the file of the first sample to be read (this is used by
the s-overwrite and s-add-to functions).

(s-add-to expression maxlen filename [offset])
Evaluates the expression, which should result in a sound or an array of sounds, and adds the result
to the given filename. The sample rate(s) of expression must match those of the file. The
maximum number of samples written per channel is given by maxlen, which allows writing the
initial part of a very long or infinite sound. If offset is specified, the new sound is added to the
file beginning at an offset from the beginning (in seconds). The file is extended if necessary to
accommodate the new addition, but if offset falls outside of the original file, the file is not
modified. (If necessary, use s-add-to to extend the file with zeros.)

(s-overwrite expression maxlen filename [offset])
Evaluates the expression, which should result in a sound or an array of sounds, and replaces
samples in the given filename. A FLONUM is returned, giving the maximum absolute value of all
samples written. The sample rate(s) of expression must match those of the file. The maximum
number of samples written per channel is given by maxlen, which allows writing the initial part of
a very long or infinite sound. If offset is specified, the new sound is written to the file beginning
at an offset from the beginning (in seconds). The file is extended if necessary to accommodate the
new insert, but if offset falls outside of the original file, the file is not modified. (If necessary, use
s-add-to to extend the file with zeros.)

(sf-info filename)
Prints information about a sound file. The parameter filename is a string. The file is assumed to
be in *default-sf-dir* (see soundfilename below) unless the filename begins with ‘‘.’’ or
‘‘/’’. The source for this function is in the runtime and provides an example of how to
determine sound file parameters.

(soundfilename name)
Converts a string name to a soundfile name. If name begins with ‘‘.’’ or ‘‘/’’, the name is

2Since XLISP does not support multiple value returns, multiple value returns are simulated by having the function assign
additional return values in a list to the global variable *rslt*. Since this is a global, it should be inspected or copied
immediately after the function return to insure that return values are not overwritten by another function.

Page 62 NYQUIST MANUAL

returned without alteration. Otherwise, a path taken from *default-sf-dir* is prepended to
name. The s-plot, s-read, and s-save functions all use soundfilename translate
filenames.

(s-plot sound n)
Plots sound in a window. The current implementations are minimal. For the RS6000/AIX
implementation, s-plot simply writes time/value pairs in ascii to a file named points.dat.
Then, an xterm is created in Tektronix emulation mode, and the Unix plot program is used to
plot the points. The files used are:

default-plot-file The file containing the data points, defaults to "points.dat".

plotscript-file The file containing the script for the xterm, defaults to
"sys/unix/rs6k/plotscript".

The script for plotting is typically something like:
graph < points.dat | plot -Ttek

This runs the Unix graph program which reads the input, scales it, and adds axes and labels. The
output is piped to the plot program which converts the graphics data into Tektronix commands.
It’s crude but works well even over a serial line.

Under the Macintosh, plotting is performed using some built-in graphics commands. Select "Split Screen"
on the Control menu to get a nice area for plotting.

Under Windows, using the NyqIDE program, plotting is built-in.

If you are interested in making a nicer plot program for any platform, please contact the author.

(s-print-tree sound)
Prints an ascii representation of the internal data structures representing a sound. This is useful
for debugging Nyquist. Identical to snd-print-tree.

5.6. Low-level Functions
Nyquist includes many low-level functions that are used to implement the functions and behaviors

described in previous sections. For completeness, these functions are described here. Remember that
these are low-level functions that are not intended for normal use. Unless you are trying to understand the
inner workings of Nyquist, you can skip this section.

5.6.1. Creating Sounds
The basic operations that create sounds are described here.

(snd-const value t0 srate duration)
Returns a sound with constant value, starting at t0 with the given duration, at the sample rate
srate. You might want to use pwl (see Section 5.2.2.2) instead.

(snd-read filename offset t0 format channels mode bits swap sr dur)
Loads a sound from a file with name filename. Files are assumed to consist of a header followed
by frames consisting of one sample from each channel. The format specifies the type of header,
but this information is currently ignored. Nyquist looks for a number of header formats and
automatically figures out which format to read. If a header can be identified, the header is first
read from the file. Then, the file pointer is advanced by the indicated offset (in seconds). If there
is an unrecognized header, Nyquist will assume the file has no header. If the header size is a
multiple of the frame size (bytes/sample * number-of-channels), you can use offset to skip over
the header. To skip N bytes, use an offset of:

(/ (float N) sr (/ bits 8) channels)

If the header is not a multiple of the frame size, either write a header or contact the author

NYQUIST FUNCTIONS Page 63

(dannenberg@cs.cmu.edu) for assistance. Nyquist will round offset to the nearest sample. The
resulting sound will start at time t0. If a header is found, the file will be interpreted according to
the header information. If no header was found, channels tells how many channels there are, the
samples are encoded according to mode, the sample length is bits, and sr is the sample rate. The
swap flag is 0 or 1, where 1 means to swap sample bytes. The duration to be read (in seconds) is
given by dur. If dur is longer than the data in the file, then a shorter duration will be returned. If
the file contains one channel, a sound is returned. If the file contains 2 or more channels, an array
of sounds is returned. Note: you probably want to call s-read (see Section 5.5) instead of
snd-read. Also, see Section 5.5 for information on the mode and format parameters.

(snd-save expression maxlen filename format mode bits swap play)
Evaluates the expression, which should result in a sound or an array of sounds, and writes the
result to the given filename. If a multichannel sound (array) is written, the channels are up-
sampled to the highest rate in any channel so that all channels have the same sample rate. The
maximum number of samples written per channel is given by maxlen, which allows writing the
initial part of a very long or infinite sound. A header is written according to format, samples are
encoded according to mode, using bits bits/sample, and swapping bytes if swap is 1 (otherwise it
should be 0). If play is not null, the audio is played in real time (to the extent possible) as it is
computed. Note: you probably want to call s-save (see Section 5.5) instead. The format and
mode parameters are described in Section 5.5.

(snd-overwrite expression maxlen filename byte-offset mode bits swap sr channels)
Evaluates the expression, which should result in a sound or an array of sounds, and replaces
samples in the given filename. The sample rate(s) of expression must match those of the file and
the parameter sr. The file is not read to determine its format, so it is essential to specify the proper
parameters: byte-offset is the offset in bytes of the first sound sample to be written, mode is the
representation (see snd-save), bits is the number of bits per sample, swap is 0 or 1, where 1
means to swap sample bytes, sr is the sample rate, and channels is the number of channels. If
these do not match the parameters for filename, it is likely that filename will be corrupted. Up to a
maximum of maxlen samples will be written per channel. Use s-add-to (in Section 5.5 or
s-overwrite (in Section 5.5 instead of this function.

(snd-coterm s1 s2)
Returns a copy of s1, except the start time is the maximum of the start times of s1 and s2, and the
termination time is the minimum of s1 and s2. (After the termination time, the sound is zero as if
s1 is gated by s2.) Some rationale follows: In order to implement s-add-to, we need to read
from the target sound file, add the sounds to a new sound, and overwrite the result back into the
file. We only want to write as many samples into the file as there are samples in the new sound.
However, if we are adding in samples read from the file, the result of a snd-add in Nyquist will
have the maximum duration of either sound. Therefore, we may read to the end of the file. What
we need is a way to truncate the read, but we cannot easily do that, because we do not know in
advance how long the new sound will be. The solution is to use snd-coterm, which will allow
us to truncate the sound that is read from the file (s1) according to the duration of the new sound
(s2). When this truncated sound is added to the new sound, the result will have only the duration
of the new sound, and this can be used to overwrite the file. This function is used in the
implementation of s-add-to, which is defined in runtime/fileio.lsp.

(snd-from-array ...)
See page 36.

(snd-white t0 sr d)
Generate white noise, starting at t0, with sample rate sr, and duration d. You probably want to
use noise (see Section 5.2.2.4).

(snd-zero t0 srate)
Creates a sound that is zero everywhere, starts at t0, and has sample rate srate. The logical stop
time is immediate, i.e. also at t0. You probably want to use pwl (see Section 5.2.2.2) instead.

Page 64 NYQUIST MANUAL

(get-slider-value index)
Return the current value of the slider named by index (an integer index into the array of sliders).
Note that this ‘‘slider’’ is just a floating point value in an array. Sliders can be changed by OSC
messages (see osc-enable) and by sending character sequences to Nyquist’s standard input.
(Normally, these character sequences would not be typed but generated by the jNyqIDE
interactive development environment, which runs Nyquist as a sub-process, and which present the
user with graphical sliders.)

(snd-slider index t0 srate duration)
Create a sound controlled by the slider named by index (an integer index into the array of sliders;
see get-slider-value for more information). The function returns a sound. Since Nyquist
sounds are computed in blocks of samples, and each block is computed at once, each block will
contain copies of the current slider value. To obtain reasonable responsiveness, slider sounds
should have high (audio) sample rates so that the block rate will be reasonably high. Also,
consider lowering the audio latency using snd-set-latency. To ‘‘trigger’’ a Nyquist
behavior using slider input, see the trigger function in Section 5.4.

5.6.2. Signal Operations
This next set of functions take sounds as arguments, operate on them, and return a sound.

(snd-abs sound)
Computes a new sound where each sample is the absolute value of the corresponding sample in
sound. You should probably use s-abs instead. (See Section 5.2.2.4.)

(snd-sqrt sound)
Computes a new sound where each sample is the square root of the corresponding sample in
sound. If a sample is negative, it is taken to be zero to avoid raising a floating point error. You
should probably use s-sqrt instead. (See Section 5.2.2.4.)

(snd-add sound1 sound)
Adds two sounds. The resulting start time is the minimum of the two parameter start times, the
logical stop time is the maximum of the two parameter stop times, and the sample rate is the
maximum of the two parameter sample rates. Use sim or sum instead of snd-add (see Section
5.4).

(snd-offset sound offset)
Add an offset to a sound. The resulting start time, logical stop time, stop time, and sample rate are
those of sound. Use sum instead (see Section 5.4).

(snd-avgsound blocksize stepsize operation)
Computes the averages or peak values of blocks of samples. Each output sample is an average or
peak of blocksize (a fixnum) adjacent samples from the input sound. After each average or peak
is taken, the input is advanced by stepsize, a fixnum which may be greater or less than blocksize.
The output sample rate is the sound (input) sample rate divided by stepsize. This function is
useful for computing low-sample-rate rms or peak amplitude signals for input to snd-gate or
snd-follow. To select the operation, operation should be one of OP-AVERAGE or OP-PEAK.
(These are global lisp variables; the actual operation parameter is an integer.) For RMS
computation, see rms in Section 5.2.2.4.

(snd-clip sound peak)
Hard limit sound to the given peak, a positive number. The samples of sound are constrained
between an upper value of peak and a lower value of –()peak. Use clip instead (see Section
5.2.2.4).

(snd-compose f g)
Compose two signals, i.e. compute f(g(t)), where f and g are sounds. This function is used
primarily to implement time warping, but it can be used in other applications such as frequency

NYQUIST FUNCTIONS Page 65

modulation. For each sample x in g, snd-compose looks up the value of f(x) using linear
interpolation. The resulting sample rate, start time, etc. are taken from g. The sound f is used in
effect as a lookup table, but it is assumed that g is non-decreasing, so that f is accessed in time
order. This allows samples of f to be computed and discarded incrementally. If in fact g
decreases, the current sample of g is replaced by the previous one, forcing g into compliance with
the non-decreasing restriction. See also sref, shape, and snd-resample.

For an extended example that uses snd-compose for variable pitch shifting, see
demos/pitch_change.htm.

(snd-tapv sound offset vardelay maxdelay)
A variable delay: sound is delayed by the sum of offset (a FIXNUM or FLONUM) and vardelay
(a SOUND). The specified delay is adjusted to lie in the range of zero to maxdelay seconds to
yield the actual delay, and the delay is implemented using linear interpolation. This function was
designed specifically for use in a chorus effect: the offset is set to half of maxdelay, and the
vardelay input is a slow sinusoid. The maximum delay is limited to maxdelay, which determines
the length of a fixed-sized buffer.

(snd-tapf sound offset vardelay maxdelay)
A variable delay like snd-tapv except there is no linear interpolation. By eliminating
interpolation, the output is an exact copy of the input with no filtering or distortion. On the other
hand, delays jump by samples causing samples to double or skip even when the delay is changed
smoothly.

(snd-copy sound)
Makes a copy of sound. Since operators always make (logical) copies of their sound parameters,
this function should never be needed. This function is here for debugging.

(snd-down srate sound)
Linear interpolation of samples down to the given sample rate srate, which must be lower than
the sample rate of sound. Do not call this function. Nyquist performs sample-rate conversion
automatically as needed. If you want to force a conversion, call force-srate (see Section
5.2.2).

(snd-exp sound)
Compute the exponential of each sample of sound. Use s-exp instead (see Section 5.2.2.4).

(snd-followsound floor risetime falltime lookahead)
An envelope follower. The basic goal of this function is to generate a smooth signal that rides on
the peaks of the input signal. The usual objective is to produce an amplitude envelope given a
low-sample rate (control rate) signal representing local RMS measurements. The first argument is
the input signal. The floor is the minimum output value. The risetime is the time (in seconds) it
takes for the output to rise (exponentially) from floor to unity (1.0) and the falltime is the time it
takes for the output to fall (exponentially) from unity to floor. The algorithm looks ahead for
peaks and will begin to increase the output signal according to risetime in anticipation of a peak.
The amount of anticipation (in sampless) is given by lookahead. The algorithm is as follows: the
output value is allowed to increase according to risetime or decrease according to falltime. If the
next input sample is in this range, that sample is simply output as the next output sample. If the
next input sample is too large, the algorithm goes back in time as far as necessary to compute an
envelope that rises according to risetime to meet the new value. The algorithm will only work
backward as far as lookahead. If that is not far enough, then there is a final forward pass
computing a rising signal from the earliest output sample. In this case, the output signal will be at
least momentarily less than the input signal and will continue to rise exponentially until it
intersects the input signal. If the input signal falls faster than indicated by falltime, the output fall
rate will be limited by falltime, and the fall in output will stop when the output reaches floor. This
algorithm can make two passes througth the buffer on sharply rising inputs, so it is not
particularly fast. With short buffers and low sample rates this should not matter. See snd-avg
above for a function that can help to generate a low-sample-rate input for snd-follow. See

Page 66 NYQUIST MANUAL

snd-chase in Section 5.6.3 for a related filter.

(snd-gate sound lookahead risetime falltime floor threshold)
This function generates an exponential rise and decay intended for noise gate implementation.
The decay starts when the signal drops below threshold and stays there for longer than lookahead.
Decay continues until the value reaches floor, at which point the decay stops and the output value
is held constant. Either during the decay or after the floor is reached, if the signal goes above
threshold, then the output value will rise to unity (1.0) at the point the signal crosses the
threshold. Again, look-ahead is used, so the rise actually starts before the signal crosses the
threshold. The rise is a constant-rate exponential and set so that a rise from floor to unity occurs
in risetime. Similarly, the fall is a constant-rate exponential such that a fall from unity to floor
takes falltime. The result is delayed by lookahead, so the output is not actually synchronized with
the input. To compensate, you should drop the initial lookahead of samples. Thus, snd-gate is
not recommended for direct use. Use gate instead (see Section 5.1.4).

(snd-inverse signal start srate)
Compute the function inverse of signal, that is, compute g(t) such that signal(g(t)) = t. This
function assumes that signal is non-decreasing, it uses linear interpolation, the resulting sample
rate is srate, and the result is shifted to have a starting time of start. If signal decreases, the true
inverse may be undefined, so we define snd-inverse operationally as follows: for each output
time point t, scan ahead in signal until the value of signal exceeds t. Interpolate to find an exact
time point x from signal and output x at time t. This function is intended for internal system use
in implementing time warps.

(snd-log sound)
Compute the natural logorithm of each sample of sound. Use s-log instead (see Section
5.2.2.4).

(peak expression maxlen)
Compute the maximum absolute value of the amplitude of a sound. The sound is created by
evaluating expression (as in s-save). Only the first maxlen samples are evaluated. The
expression is automatically quoted (peak is a macro), so do not quote this parameter. If
expression is a variable, then the global binding of that variable will be used. Also, since the
variable retains a reference to the sound, the sound will be evaluated and left in memory. See
Section 4.3 on page 27 for examples.

(snd-max expression maxlen)
Compute the maximum absolute value of the amplitude of a sound. The sound is created by
evaluating expression (as in snd-save), which is therefore normally quoted by the caller. At
most maxlen samples are computed. The result is the maximum of the absolute values of the
samples. Notes: It is recommended to use peak (see above) instead. If you want to find the
maximum of a sound bound to a local variable and it is acceptable to save the samples in
memory, then this is probably the function to call. Otherwise, use peak.

(snd-maxv sound1 sound2)
Compute the maximum of sound1 and sound2 on a sample-by-sample basis. The resulting sound
has its start time at the maximum of the input start times and a logical stop at the minimum
logical stop of the inputs. The physical stop time is the minimum of the physical stop times of the
two sounds. Note that this violates the ‘‘normal’’ interpretation that sounds are zero outside their
start and stop times. For example, even if sound1 extends beyond sound2 and is greater than
zero, the result value in this extension will be zero because it will be after the physical stop time,
whereas if we simply treated sound2 as zero in this region and took the maximum, we would get a
non-zero result. Use s-max instead (see Section 5.2.2.4).

(snd-normalize sound)
Internally, sounds are stored with a scale factor that applies to all samples of the sound. All
operators that take sound arguments take this scale factor into account (although it is not always
necessary to perform an actual multiply per sample), so you should never need to call this

NYQUIST FUNCTIONS Page 67

function. This function multiplies each sample of a sound by its scale factor, returning a sound
that represents the same signal, but whose scale factor is 1.0.

(snd-oneshotsound threshold ontime)
Computes a new sound that is zero except where sound exceeds threshold. From these points, the
result is 1.0 until sound remains below threshold for ontime (in seconds). The result has the same
sample rate, start time, logical stop time, and duration as sound.

(snd-prod sound1 sound2)
Computes the product of sound1 and sound2. The resulting sound has its start time at the
maximum of the input start times and a logical stop at the minimum logical stop of the inputs.
Do not use this function. Use mult or prod instead (see Section 5.2.2). Sample rate, start time,
etc. are taken from sound.

(snd-pwl t0 sr lis)
Computes a piece-wise linear function according to the breakpoints in lis. The starting time is t0,
and the sample rate is sr. The breakpoints are passed in an XLISP list (of type LVAL) where the
list alternates sample numbers (FIXNUMs, computed in samples from the beginning of the pwl
function) and values (the value of the pwl function, given as a FLONUM). There is an implicit
starting point of (0, 0). The list must contain an odd number of points, the omitted last value
being implicitly zero (0). The list is assumed to be well-formed. Do not call this function. Use
pwl instead (see Section 5.2.2.2).

(snd-quantize sound steps)
Quantizes a sound. See Section 5.2.2.4 for details.

(snd-recip sound)
Compute the reciprocal of each sample of sound. Use recip instead (see Section 5.2.2.4).

(snd-resample f rate)
Resample sound f using high-quality interpolation, yielding a new sound with the specified rate.
The result is scaled by 0.95 because often, in resampling, interpolated values exceed the original
sample values, and this could lead to clipping. The resulting start time, etc. are taken from f. Use
resample instead.

(snd-resamplev f rate g)
Compose two signals, i.e. compute f(g(t)), where f and g are sounds. The result has sample rate
given by rate. At each time t (according to the rate), g is linearly interpolated to yield an
increasing sequence of high-precision score-time values. f is then interpolated at each value to
yield a result sample. If in fact g decreases, the current sample of g is replaced by the previous
one, forcing g into compliance with the non-decreasing restriction. The result is scaled by 0.95
because often, in resampling, interpolated values exceed the original sample values, and this
could lead to clipping. Note that if g has a high sample rate, this may introduce unwanted jitter
into sample times. See sound-warp for a detailed discussion. See snd-compose for a fast,
low-quality alternative to this function. Normally, you should use sound-warp instead of this
function.

(snd-scale scale sound)
Scales the amplitude of sound by the factor scale. Use scale instead (see Section 5.2.2).

(snd-shape signal table origin)
A waveshaping function. This is the primitive upon which shape is based. The snd-shape
function is like shape except that signal and table must be (single-channel) sounds. Use shape
instead (see Section 5.2.2.3).

(snd-up srate sound)
Increases sample rate by linear interpolation. The sound is the signal to be up-sampled, and srate
is the output sample rate. Do not call this function. Nyquist performs sample-rate conversion
automatically as needed. If you want to force a conversion, call force-srate (see Section
5.2.2).

Page 68 NYQUIST MANUAL

(snd-xform sound sr time start stop scale)
Makes a copy of sound and then alters it in the following order: (1) the start time (snd-t0) of
the sound is shifted to time, (1) the sound is stretched as a result of setting the sample rate to sr
(the start time is unchanged by this), (3) the sound is clipped from start to stop, (4) if start is
greater than time, the sound is shifted shifted by time - start, so that the start time is time, (5) the
sound is scaled by scale. An empty (zero) sound at time will be returned if all samples are
clipped. Normally, you should accomplish all this using transformations. A transformation
applied to a sound has no effect, so use cue to create a transformable sound (see Section 5.2.1).

(snd-yin sound minstep maxstep rate)
Identical to yin. See Section 5.2.2.4.

5.6.3. Filters
These are also ‘‘Signal Operators,’’ the subject of the previous section, but there are so many filter

functions, they are documented in this special section.

Some filters allow time-varying filter parameters. In these functions, filter coefficients are calculated at
the sample rate of the filter parameter, and coefficients are not interpolated.

(snd-alpass sound delay feedback)
An all-pass filter. This produces a repeating echo effect without the resonances of snd-delay.
The feedback should be less than one to avoid exponential amplitude blowup. Delay is rounded
to the nearest sample. You should use alpass instead (see Section 5.2.2.3).

(snd-alpasscv sound delay feedback)
An all-pass filter with variable feedback. This is just like snd-alpass except feedback is a sound.
You should use alpass instead (see Section 5.2.2.3).

(snd-alpassvv sound delay feedback maxdelay)
An all-pass filter with variable feedback and delay. This is just like snd-alpass except feedback
and delay are sounds, and there is an additional FLONUM parameter, maxdelay, that gives an
upper bound on the value of delay. Note: delay must remain between zero and maxdelay. If not,
results are undefined, and Nyquist may crash. You should use alpass instead (see Section
5.2.2.3).

(snd-areson sound hz bw normalization)
A notch filter modeled after the areson unit generator in Csound. The snd-areson filter is
an exact complement of snd-reson such that if both are applied to the same signal with the
same parameters, the sum of the results yeilds the original signal. Note that because of this
complementary design, the power is not normalized as in snd-reson. See snd-reson for
details on normalization. You should use areson instead (see Section 5.2.2.3).

(snd-aresoncv sound hz bw normalization)
This function is identical to snd-areson except the bw (bandwidth) parameter is a sound.
Filter coefficients are updated at the sample rate of bw. The ‘‘cv’’ suffix stands for Constant,
Variable, indicating that hz and bw are constant (a number) and variable (a sound), respectively.
This naming convention is used throughout. You should use areson instead (see Section
5.2.2.3).

(snd-aresonvc sound hz bw normalization)
This function is identical to snd-areson except the hz (center frequency) parameter is a sound.
Filter coefficients are updated at the sample rate of hz. You should use areson instead (see
Section 5.2.2.3).

(snd-aresonvv sound hz bw normalization)
This function is identical to snd-areson except both hz (center frequency) and bw (bandwidth)
are sounds. Filter coefficients are updated at the next sample of either hz or bw. You should use

NYQUIST FUNCTIONS Page 69

areson instead (see Section 5.2.2.3).

(snd-atone sound hz)
A high-pass filter modeled after the atone unit generator in Csound. The snd-atone filter is
an exact complement of snd-tone such that if both are applied to the same signal with the same
parameters, the sum of the results yeilds the original signal. You should use hp instead (see
Section 5.2.2.3).

(snd-atonev sound hz)
This is just like snd-atone except that the hz cutoff frequency is a sound. Filter coefficients
are updated at the sample rate of hz. You should use hp instead (see Section 5.2.2.3).

(snd-biquad sound b0 b1 b2 a1 a2 z1init z2init)
A general second order IIR filter, where a0 is assumed to be unity. For a1 and a2, the sign
convention is opposite to that of Matlab. All parameters except the input sound are of type
FLONUM. You should probably use one of lowpass2, highpass2, bandpass2, notch2,
allpass2, eq-lowshelf, eq-highshelf, eq-band, lowpass4, lowpass6,
lowpass8, highpass4, highpass6, or highpass8, which are all based on snd-biquad
and described in Section 5.2.2.3. For completeness, you will also find biquad and biquad-m
described in that section.

(snd-chase sound risetime falltime)
A slew rate limiter. The output ‘‘chases’’ the input at rates determined by risetime and falltime.
If the input changes too fast, the output will lag behind the input. This is a form of lowpass filter,
but it was created to turn hard-switching square waves into smoother control signals that could be
used for linear crossfades. If the input switches from 0 to 1, the output will linearly rise to 1 in
risetime seconds. If the input switches from 1 to 0, the output will linearly fall to 0 in falltime
seconds. The generated slope is constant; the transition is linear; this is not an exponential rise or
fall. The risetime and falltime must be scalar constants; complain to the author if this is not
adequate. The snd-chase function is safe for ordinary use. See snd-follow in Section 5.6.2
for a related function.

(snd-congen gate risetime falltime)
A simple ‘‘contour generator’’ based on analog synthesizers. The gate is a sound that normally
steps from 0.0 to 1.0 at the start of an envelop and goes from 1.0 back to 0.0 at the beginning of
the release. At each sample, the output converges to the input exponentially. If gate is greater
than the output, e.g. the attack, then the output converges half-way to the output in risetime. If
the gate is less than the output, the half-time is falltime. The sample rate, starting time, logical-
stop-time, and terminate time are taken from gate. You should use congen instead (see Section
5.2.2.3.

(snd-convolve sound response)
Convolves sound by response using a simple O(N x M) algorithm. The sound can be any length,
but the response is computed and stored in a table. The required compuation time per sample and
total space are proportional to the length of response. Use convolve instead (see Section
5.2.2.3).

(snd-delay sound delay feedback)
Feedback delay. The output, initially sound, is recursively delayed by delay, scaled by feedback,
and added to itself, producing an repeating echo effect. The feedback should be less than one to
avoid exponential amplitude blowup. Delay is rounded to the nearest sample. You should use
feedback-delay instead (see Section 5.2.2.3)

(snd-delaycv sound delay feedback)
Feedback delay with variable feedback. This is just like snd-delay except feedback is a sound.
You should use feedback-delay instead (see Section 5.2.2.3).

(snd-reson sound hz bw normalization)
A second-order resonating (bandpass) filter with center frequency hz and bandwidth bw, modeled

Page 70 NYQUIST MANUAL

after the reson unit generator in Csound. The normalization parameter must be an integer and
(like in Csound) specifies a scaling factor. A value of 1 specifies a peak amplitude response of
1.0; all frequencies other than hz are attenuated. A value of 2 specifies the overall RMS value of
the amplitude response is 1.0; thus filtered white noise would retain the same power. A value of
zero specifies no scaling. The result sample rate, start time, etc. are takend from sound. You
should use reson instead (see Section 5.2.2.3).

(snd-resoncv sound hz bw normalization)
This function is identical to snd-reson except bw (bandwidth) is a sound. Filter coefficients
are updated at the sample rate of bw. You should use reson instead (see Section 5.2.2.3).

(snd-resonvc sound hz bw normalization)
This function is identical to snd-reson except hz (center frequency) is a sound. Filter
coefficients are updated at the sample rate of hz. You should use reson instead (see Section
5.2.2.3).

(snd-resonvv sound hz bw normalization)
This function is identical to snd-reson except botth hz (center frequency) and bw (bandwidth)
are sounds. Filter coefficients are updated at the next sample from either hz or bw. You should
use reson instead (see Section 5.2.2.3).

(snd-tone sound hz)
A first-order recursive low-pass filter, based on the tone unit generator of Csound. The hz
parameter is the cutoff frequency, the response curve’s half-power point. The result sample rate,
start time, etc. are takend from sound. You should use lp instead (see Section 5.2.2.3).

(snd-tonev sound hz)
This function is identical to snd-tone except hz (cutoff frequency) is a sound. The filter
coefficients are updated at the sample rate of hz. You should use lp instead (see Section 5.2.2.3).

5.6.4. Table-Lookup Oscillator Functions
These functions all use a sound to describe one period of a periodic waveform. In the current

implementation, the sound samples are copied to an array (the waveform table) when the function is
called. To make a table-lookup oscillator generate a specific pitch, we need to have several pieces of
information:

• A waveform to put into the table. This comes from the sound parameter.

• The length (in samples) of the waveform. This is obtained by reading samples (starting at the
sound’s start time, not necessarily at time zero) until the physical stop time of the sound. (If
you read the waveform from a file or generate it with functions like sim and sine, then the
physical and logical stop times will be the same and will correspond to the duration you
specified, rounded to the nearest sample.)

• The intrinsic sample rate of the waveform. This sample rate is simply the sample rate
property of sound.

• The pitch of the waveform. This is supplied by the step parameter and indicates the pitch (in
steps) of sound. You might expect that the pitch would be related to the period (length) of
sound, but there is the interesting case that synthesis based on sampling often loops over
multiple periods. This means that the fundamental frequency of a generated tone may be
some multiple of the looping rate. In Nyquist, you always specify the perceived pitch of the
looped sound if the sound is played at the sound’s own sample rate.

• The desired pitch. This is specified by the hz parameter in Hertz (cycles per second) in these
low-level functions. Note that this is not necessarily the ‘‘loop’’ rate at which the table is
scanned. Instead, Nyquist figures what sample rate conversion would be necessary to
‘‘transpose’’ from the step which specifies the original pitch of sound to hz, which gives the

NYQUIST FUNCTIONS Page 71

desired pitch. The mixed use of steps and Hertz came about because it seemed that sample
tables would be tagged with steps (‘‘I sampled a middle-C’’), whereas frequency deviation in
the fmosc function is linear, thus calling for a specification in Hertz.

• The desired sample rate. This is given by the sr parameter in Hertz.

Other parameters common to all of these oscillator functions are:

• t0, the starting time, and

• phase, the starting phase in degrees. Note that if the step parameter indicates that the table
holds more than one fundamental period, then a starting phase of 360 will be different than a
starting phase of 0.

(snd-amosc sound step sr hz t0 am phase)
An oscillator with amplitude modulation. The sound am specifies the amplitude and the logical
stop time. The physical stop time is also that of am. You should use amosc instead (see Section
5.2.2.1).

(snd-fmosc s step sr hz t0 fm phase)
A Frequency Modulation oscillator. The sound fm specifies frequency deviation (in Hertz) from
hz. You should use fmosc instead (see Section 5.2.2.1).

(snd-buzz n sr hz t0 fm)
A buzz oscillator, which generates n harmonics of equal amplitude. The fm specifies frequency
deviation (in Hertz) from hz. You should use buzz instead (see Section 5.2.2.1).

(snd-pluck sr hz t0 d final-amp)
A Karplus-Strong plucked string oscillator with sample rate sr, fundamental frequency hz,
starting time t0, duration d, initial amplitude approximately 1.0 (not exact because the string is
initialized with random values) and final amplitude approximately final-amp. You should use
pluck instead (see Section 5.2.2.1).

(snd-osc s step sr hz t0 d phase)
A simple table lookup oscillator with fixed frequency. The duration is d seconds. You should
use osc instead (see Section 5.2.2.1).

(snd-partial sr hz t0 env)
This is a special case of snd-amosc that generates a sinusoid starting at phase 0 degrees. The
env parameter gives the envelope or any other amplitude modulation. You should use partial
instead (see Section 5.2.2.1).

(snd-sine t0 hz sr d)
This is a special case of snd-osc that always generates a sinusoid with initial phase of 0
degrees. You should use sine instead (see Section 5.2.2.1).

(snd-siosc tables sr hz t0 fm)
A Spectral Interpolation Oscillator with frequency modulation. The tables is a list of sounds and
sample counts as follows: (table0 count1 table1 ... countN tableN). The initial waveform is given
by table0, which is interpolated linearly to table1 over the first count1 samples. From count1 to
count2 samples, the waveform is interpolated from table1 to table2, and so on. If more than
countN samples are generated, tableN is used for the remainder of the sound. The duration and
logical stop time of the sound is taken from fm, which specified frequency modulation (deviation)
in Hertz. You should use siosc instead (see Section 5.2.2.1).

Page 72 NYQUIST MANUAL

5.6.5. Physical Model Functions
These functions perform some sort of physically-based modeling synthesis.

(snd-clarinet freq breath-env sr)
A clarinet model implemented in STK. The freq is a FLONUM in Hertz, breath-env is a SOUND
that ranges from zero to one, and sr is the desired sample rate (a FLONUM). You should use
clarinet instead (see Section 5.2.2).

(snd-clarinet-freq freq breath-env freq-env sr)
A clarinet model just like snd-clarinet but with an additional parameter for continuous
frequency control. You should use clarinet-freq instead (see Section 5.2.2).

(snd-clarinet-all freq vibrato-freq vibrato-gain freq-env breath-env reed-stiffness noise
sr)
A clarinet model just like snd-clarinet-freq but with additional parameters for vibrato
generation and continuous control of reed stiffness and breath noise. You should use
clarinet-all instead (see Section 5.2.2).

(snd-sax freq breath-env sr)
A sax model implemented in STK. The freq is a FLONUM in Hertz, breath-env is a SOUND that
ranges from zero to one, and sr is the desired sample rate (a FLONUM). You should use sax
instead (see Section 5.2.2).

(snd-sax-freq freq freq-env breath-env sr)
A sax model just like snd-sax but with an additional parameter for continuous frequency
control. You should use sax-freq instead (see Section 5.2.2).

(snd-sax-all freq vibrato-freq vibrato-gain freq-env breath-env reed-stiffness noise blow-pos
reed-table-offset sr)
A sax model just like snd-sax-freq but with additional parameters for vibrato generation and
continuous control of reed stiffness, breath noise, excitation position, and reed table offset. You
should use sax-all instead (see Section 5.2.2).

5.6.6. Sequence Support Functions
The next two functions are used to implement Nyquist’s seq construct.

(snd-seq sound closure)
This function returns sound until the logical stop time of sound. Then, the XLISP closure is
evaluated, passing it the logical stop time of sound as a parameter. The closure must return a
sound, which is then added to sound. (An add is used so that sound can continue past its logical
stop if desired.) Do not call this function. See seq in Section 5.4.

(snd-multiseq array closure)
This function is similar to snd-seq except the first parameter is a multichannel sound rather
than a single sound. A multichannel sound is simply an XLISP array of sounds. An array of
sounds is returned which is the sum of array and another array of sounds returned by closure.
The closure is passed the logical stop time of the multichannel sound, which is the maximum
logical stop time of any element of array. Do not call this function. See seq in Section 5.4.

(snd-trigger s closure)
This is one of the only ways in which a behavior instance can be created by changes in a signal. When s
(a SOUND) makes a transition from less than or equal to zero to greater than zero, the closure, which takes
a starting time parameter, is evaluated. The closure must return a SOUND. The sum of all these sounds is
returned. If there are no sounds, the result will be zero. The stop time of the result is the maximum stop
time of s and all sounds returned by the closure. The sample rate of the return value is the sample rate of
s, and the sounds returned by the closure must all have that same sample rate. Do not call this function.
See trigger in Section 5.4.

NYQUIST FUNCTIONS Page 73

An implementation note: There is no way to have snd-trigger return a multichannel sound. An
alternative implementation would be a built-in function to scan ahead in a sound to find the time of the
next zero crossing. This could be combined with some LISP code similar to seq to sum up instances of
the closure. However, this would force arbitrary look-ahead and therefore would not work with real-time
inputs, which was the motivation for snd-trigger in the first place.

Page 74 NYQUIST MANUAL

NYQUIST GLOBALS Page 75

6. Nyquist Globals
There are many global variables in Nyquist. A convention in Lisp is to place asterisks (*) around global

variables, e.g. *table*. This is only a convention, and the asterisks are just like any other letter as far as
variable names are concerned. Here are some globals users should know about:

table Default table used by osc and other oscillators.

A4-Hertz Frequency of A4 in Hertz.. Note: you must call (set-pitch-names)
to recompute pitches after changing *A4-Hertz*.

autonorm The normalization factor to be applied to the next sound when
autonorm-type is ’previous. See Sections 4.3 and 5.5.

autonormflag Enables the automatic normalization feature of the play command. You
should use (autonorm-on) and (autonorm-off) rather than
setting *autonormflag* directly. See Sections 4.3 and 5.5.

autonorm-max-samples
Specifies how many samples will be computed searching for a peak
value when *autonorm-type* is ’lookahead. See Sections 4.3
and 5.5.

autonorm-previous-peak
The peak of the previous sound generated by play. This is used to
compute the scale factor for the next sound when *autonorm-type*
is ’previous. See Sections 4.3 and 5.5.

autonorm-target The target peak amplitude for the autonorm feature. The default value is
0.9. See Sections 4.3 and 5.5.

autonorm-type Determines how the autonorm feature is implemented. Valid values are
’lookahead (the default) and ’previous. See Sections 4.3 and 5.5.

breakenable Controls whether XLISP enters a break loop when an error is
encountered. See Section IV.14.

control-srate Part of the environment, establishes the control sample rate. See Section
2.1 for details.

*default-sf-bits**default-sf-bits
The default bits-per-sample for sound files. Typically 16.

default-sf-dir The default sound file directory. Unless you give a full path for a file,
audio files are assumed to be in this directory.

default-sf-format The default sound file format. When you write a file, this will be the
default format: AIFF for Mac and most Unix systems, NeXT for NeXT
systems, and WAV for Win32.

default-sf-srate The default sample rate for sound files. Typically 44100.0, but often set
to 22050.0 for speed in non-critical tasks.

default-control-srate
Default value for *control-srate*. This value is restored when you
execute (top) to pop out of a debugging session. Change it by calling
(set-control-srate value).

default-sound-srate Default value for *sound-srate*. This value is restored when you
execute (top) to pop out of a debugging session. Change it by calling
(set-sound-srate value).

file-separator The character that separates directories in a path, e.g. ‘‘/’’ for Unix,
‘‘:’’ for Mac, and ‘‘\’’ for Win32. This is normally set in

Page 76 NYQUIST MANUAL

system.lsp.

rslt When a function returns more than one value, *rslt* is set to a list of
the ‘‘extra’’ values. This provides a make-shift version of the
multiple-value-return facility in Common Lisp.

sound-srate Part of the environment, establishes the audio sample rate. See Section
2.1 for details.

soundenable Controls whether writes to a sound file will also be played as audio. Set
this variable by calling (sound-on) or (sound-off).

tracenable Controls whether XLISP prints a backtrace when an error is encountered.

XLISP variables See Section IV.14 for a list of global variables defined by XLISP.

Environment variables See Section 2.1 for definitions of variables used in the environment for
behaviors. In general, you should never set or access these variables
directly.

Various constants See Section 1.4 for definitions of predefined constants for loudness,
duration, and pitch.

TIME/FREQUENCY TRANSFORMATION Page 77

7. Time/Frequency Transformation
Nyquist provides functions for FFT and inverse FFT operations on streams of audio data. Because

sounds can be of any length, but an FFT operates on a fixed amount of data, FFT processing is typically
done in short blocks or windows that move through the audio. Thus, a stream of samples is converted in
to a sequence of FFT frames representing short-term spectra.

Nyquist does not have a special data type corresponding to a sequence of FFT frames. This would be
nice, but it would require creating a large set of operations suitable for processing frame sequences.
Another approach, and perhaps the most ‘‘pure’’ would be to convert a single sound into a multichannel
sound, with one channel per bin of the FFT.

Instead, Nyquist violates its ‘‘pure’’ functional model and resorts to objects for FFT processing. A
sequence of frames is represented by an XLISP object. Whenever you send the selector :next to the
object, you get back either NIL, indicating the end of the sequence, or you get an array of FFT
coefficients.

The Nyquist function snd-fft (mnemonic, isn’t it?) returns one of the frame sequence generating
objects. You can pass any frame sequence generating object to another function, snd-ifft, and turn the
sequence back into audio.

With snd-fft and snd-ifft, you can create all sorts of interesting processes. The main idea is to
create intermediate objects that both accept and generate sequences of frames. These objects can operate
on the frames to implement the desired spectral-domain processes. Examples of this can be found in the
file fft_tutorial.htm, which is part of the standard Nyquist release. The documentation for
snd-fft and snd-ifft follows.

(snd-fft sound length skip window)
This function performs an FFT on the first samples in sound and returns a Lisp array of
FLONUMs. The function modifies the sound, violating the normal rule that sounds are immutable
in Nyquist, so it is advised that you copy the sound using snd-copy if there are any other
references to sound. The length of the FFT is specified by length, a FIXNUM (integer). After each
FFT, the sound is advanced by skip samples, also of type FIXNUM. Overlapping FFTs, where
skip is less than length, are allowed. If window is not NIL, it must be a sound. The first length
samples of window are multiplied by length samples of sound before performing the FFT. When
there are no more samples in sound to transform, this function returns NIL. The coefficients in
the returned array, in order, are the DC coefficient, the first real, the first imaginary, the second
real, the second imaginary, etc. If the length is even, the last array element corresponds to the real
coefficient at the Nyquist frequency.

(snd-ifft time srate iterator skip window)
This function performs an IFFT on a sequence of spectral frames obtained from iterator and
returns a sound. The start time of the sound is given by time. Typically, this would be computed
by calling (local-to-global 0). The sample rate is given by srate. Typically, this would
be *sound-srate*, but it might also depend upon the sample rate of the sound from which the
spectral frames were derived. To obtain each frame, the function sends the message :next to the
iterator object, using XLISP’s primitives for objects and message passing. The object should
return an array in the same format as obtained from snd-fft, and the object should return NIL
when the end of the sound is reached. After each frame is inverse transformed into the time
domain, it is added to the resulting sound. Each successive frame is added with a sample offset
specified by skip relative to the previous frame. This must be an integer greater than zero. If
window is not NIL, it must be a sound. This window signal is multiplied by the inverse
transformed frame before the frame is added to the output sound. The length of each frame should

Page 78 NYQUIST MANUAL

be the same. The length is implied by the array returned by iterator, so it does not appear as a
parameter. This length is also the number of samples used from window. Extra samples are
ignored, and window is padded with zeros if necessary, so be sure window is the right length. The
resulting sound is computed on demand as with other Nyquist sounds, so :next messages are
sent to iterator only when new frames are needed. One should be careful not to reuse or modify
iterator once it is passed to snd-ifft.

MIDI, ADAGIO, AND SEQUENCES Page 79

8. MIDI, Adagio, and Sequences
Nyquist includes facilities to read and write MIDI files as well as an ASCII text-based score

representation language, Adagio. XLISP and Nyquist can be used to generate MIDI files using
compositional algorithms. (See also Section 11.) A tutorial on using the Adadio representation and MIDI
can be found in demos/midi_tutorial.htm. The Adagio language is described below. Adagio was
originally developed as part of the CMU MIDI Toolkit, which included a program to record and play
MIDI using the Adagio representation. Some of the MIDI features of Adagio may not be useful within
Nyquist.

Nyquist offers a number of different score representations, and you may find this confusing. In general,
MIDI files are a common way to exchange music performance data, especially with sequencers and score
notation systems. The demos/midi_tutorial.htm examples show how to get the most precise
control when generating MIDI data. Adagio is most useful as a text-based score entry language, and it is
certainly more compact than Lisp expressions for MIDI-like data. The Xmusic library (Chapter 11) is best
for algorithmic generation of music and score manipulation. There are functions to convert between the
Adagio, MIDI sequence data, and Xmusic score representations.

Adagio is an easy-to-use, non-procedural notation for scores. In Adagio, text commands are used to
specify each note. If you are new to Adagio, you may want to glance at the examples in Section 8.3
starting on page 85 before reading any further.

A note is described in Adagio by a set of attributes, and any attribute not specified is ‘‘inherited’’ from
the previous line. Attributes may appear in any order and must be separated by one or more blanks. An
attribute may not contain any blanks. The attributes are: time, pitch, loudness, voice number, duration,
and articulation.

Adagio has been used to program a variety of hardware and software synthesizers, and the Adagio
compiler can be easily adapted to new environments. Although not originally intended for MIDI, Adagio
works quite well as a representation for MIDI scores. Adagio has been extended to allow MIDI controller
data such as modulation wheels, pitch bend, and volume, MIDI program commands to change timbre, and
System Exclusive messages.

A note command in Adagio must be separated from other notes. Usually, notes are distinguished by
writing each one on a separate line. Notes can also be separated by using a comma or semicolon as will
be described below.

Besides notes, there are several other types of commands:
1. An asterisk (*) in column one (or immediately after a comma, semicolon, or space)

indicates that the rest of the line is a comment. The line is ignored by Adagio, and is
therefore a good way to insert text to be read by people. Here are some examples:

* This is a comment.
T150 G4 * This is a comment too!
T150 G4 ;* So is this.

2. An empty command (a blank line, for example) is ignored as if it were a comment3.

3To be consistent, a blank line ought to specify zero attributes and generate a note that inherits all of its attributes from the
previous one. Adagio is intentionally inconsistent in this respect.

Page 80 NYQUIST MANUAL

3. An exclamation point (!) in column one (or immediately after a comma or semicolon)
indicates a special command. A special command does not generate a note. Special
commands follow the ‘‘!’’ with no intervening spaces and extend to the end of the line, for
example:

!TEMPO 100

4. Control change commands are used to control parameters like pitch bend, modulation, and
program (timbre). Control change commands can be specified along with notes or by
themselves. A command that specifies control changes without specifying a pitch will not
produce a note.

Adagio is insensitive to case, thus ‘‘A’’ is equivalent to ‘‘a’’, and you can mix upper and lower case
letters freely.

8.1. Specifying Attributes
A note is indicated by a set of attributes. Attributes are indicated by a string of characters with no

intervening spaces because spaces separate attributes. The attributes are described below.

The default unit of time is a centisecond (100th’s), but this can be changed to a millisecond (1000th’s)
using the !MSEC command and reset to centiseconds with !CSEC (see Section 8.4.1). In the descriptions
below, the term ‘‘time unit’’ will be used to mean whichever convention is currently in effect.

8.1.1. Time
The time attribute specifies when to start the note. A time is specified by a ‘‘T’’ followed by a number

representing time units or by a duration (durations are described below). Examples:
T150 ** 1.5 sec (or .15 sec)
TQ3 ** 3 quarter note’s duration

If no time is specified, the default time is the sum of the time and duration attributes of the previous note.
(But see Section 8.1.4.) Time is measured relative to the time of the most recent Tempo or Rate
command. (See the examples in Section 8.3 for some clarification of this point.)

8.1.2. Pitch
The pitch attribute specifies what frequency to produce. Standard scale pitches are named by name,

using S for sharp, F for flat, and (optionally) N for natural. For example, C and CN represent the same
pitch, as do FS and GF (F sharp and G flat). Note that there are no bar lines, and accidentals to not carry
forward to any other notes as in common practice notation.

Octaves are specified by number. C4 is middle C, and B3 is a half step lower. F5 is the top line of the
treble clef, etc. (Adagio octave numbering follows the ISO standard, but note that this is not universal. In
particular, Yamaha refers to middle C as C3.) Accidentals can go before or after the octave number, so
FS3 and F3S have the same meaning.

An alternate notation for pitch is Pn, where n is an integer representing the pitch.Middle C (C4) is
equivalent to P60, CS4 is P61, etc.

If you do not specify an octave, Adagio will choose one for you. This is done by picking the octave
that will make the current pitch as close to the previous pitch as possible. In the case of augmented

MIDI, ADAGIO, AND SEQUENCES Page 81

fourths or diminished fifths, there are two equally good choices. Adagio chooses the lower octave.

8.1.3. Duration
Duration is specified by a letter indicating a number of beats, followed by one or several modifiers.

The basic duration codes are:

W (whole, 4 beats),
H (half, 2 beats),
Q (quarter, 1 beat),
I (eighth, 1/2 beat),
S (sixteenth, 1/4 beat),
% (thirtysecond, 1/8 beat), and
^ (sixtyfourth, 1/16 beat).

Note that E is a pitch, so eighth-notes use the duration code I. The default tempo is 100 beats per minute
(see Section 8.1.10). These codes may be followed by a T (triplet), indicating a duration of 2/3 the
normal. A dot (.) after a duration code extends it by half to 3/2 the normal. An integer after a note
multiplies its duration by the indicated value (the result is still just one note). Finally, a slash followed by
an integer divides the duration by the integer. Like all attributes, duration attributes may not have
embedded spaces. Examples:

Q 1 beat (quarter note)
QT 2/3 beat (quarter triplet)
W. 6 beats(dotted whole note)
ST6 1 beat (6 sixteenth triplets)
H5 10 beats(5 half notes)
Q3/7 3/7 beats

A duration may be noted by Un, where n is an integer indicating 100th’s of a second (or 1000th’s), see
Section 8.4.1. For example, U25 is twenty-five time units.

Durations may be combined using a plus sign:
Q+IT ** a quarter tied to an eighth triplet
Q/7+W+Q2/7 ** a 7th beat tied to a whole tied to 2/7th beat
Q+U10 ** a quarter plus 10 time units

8.1.4. Next Time
The time of the next command (the next command in the Adagio program text) is normally the time of

the current note command plus the duration of the current note. This can be overridden by a field
consisting of the letter N followed by a number indicating time units, or followed by a duration as
described above. The next note will then start at the time of the current note plus the duration specified
after N. If the next note has an explicit time attribute (T), then the specified time will override the one
based on the previous note. Examples:

N0 ** start the next note at the same time as this one
N50 ** start the next note 0.5 seconds after this one
NQT ** start the next note 2/3 beat after the current one
NU10+Q ** start after 0.1 seconds plus a quarter

A comma has an effect similar to N0 and is explained in Section 8.4.2. Articulation effects such as
staccato can be produced using N, but it is more convenient to use the articulation attribute described in
Section 8.1.6.

Page 82 NYQUIST MANUAL

8.1.5. Rest
Rests are obtained by including the field R in a note command. The effect of an R field is to omit the

note that would otherwise occur as the result of the current note command. In all other respects, the
command is processed just like any other line. This means that attributes such as duration, loudness, and
pitch can be specified, and anything specified will be inherited by the note in the next command.
Normally, a rest will include just R and a duration. The fact that a note command specifies a rest is not
inherited. For example:

R H ** a half (two beat) rest
RH ** illegal, R must be separated from H by space(s)

Because some synthesizers (e.g. a DX7) cannot change programs (presets) rapidly, it may be desirable to
change programs in a rest so that the synthesizer will be ready to play by the end of the rest. See Section
8.1.9 for an example.

8.1.6. Articulation
Articulation in Adagio refers to the percentage of time a note is on relative to the indicated duration.

For example, to play a note staccato, you would normally play the note about half of its indicated
duration. In Adagio, articulation is indicated by # followed by an integer number indicating a percentage.
The articulation attribute does not affect the time of the next command. This example plays two staccato
quarter notes:

C Q #50
D

To produce overlapping notes, the articulation may be greater than 100.
Be aware that overlapping notes on the same pitch can be a problem for some synthesizers. The following example illustrates
this potential problem:

!TEMPO 60
C Q #160 * starts at time 0, ends at 1.6 sec
D I * starts at time 1, ends at 1.8 sec
C Q * starts at time 1.5, ends at 3.1 sec?

At one beat per second (tempo 60), these three notes will start at times 0, 1, and 1.5 seconds, respectively. Since these notes have
an articulation of 160, each will be on 160% of its nominal duration, so the first note (C) will remain on until 1.6 seconds. But
the third note (another C) will start at time 1.5 seconds. Thus, the second C will be started before the first one ends. Depending
on the synthesizer, this may cancel the first C or play a second C in unison. In either case, a note-off message will be sent at time
1.6 seconds. If this cancels the second C, its actual duration will be 0.1 rather than 1.6 seconds as intended. A final note-off will
be sent at time 3.1 seconds.

8.1.7. Loudness
Loudness is indicated by an L followed by a dynamic marking from the following: PPP, PP, P, MP, MF,

F, FF, FFF. Alternatively, a number from 1 to 127 may be used. The loudness attribute is the MIDI note
velocity. (Note that a MIDI velocity of 0 means ‘‘note-off,’’ so the minimum loudness is 1.) The
dynamicmarkings are translated into numbers as follows:

Lppp 20 Lmf 58
Lpp 26 Lf 75
Lp 34 Lff 98
Lmp 44 Lfff 127

MIDI, ADAGIO, AND SEQUENCES Page 83

8.1.8. Voice
The voice attribute tells which of the 16 MIDI channels to use for the note. The voice attribute consists

of a V followed by an integer from 1 (the default) to 16.
There is a limit to how many notes can be played at the same time on a given voice (MIDI channel). Since the limit depends
upon the synthesizer, Adagio cannot tell you when you exceed the limit. Similarly, Adagio cannot tell whether your synthesizer
is set up to respond to a given channel, so there is no guarantee that what you write will actually be heard.

8.1.9. Timbre (MIDI Program)
A MIDI program (synthesizer preset) can be selected using the attribute Zn, where n is the program

number (from 1 to 128). Notice that in MIDI, changing the program on a given channel will affect all
notes on that channel and possibly others. Adagio treats MIDI program changes as a form of control
change.
For many synthesizers, you will not be able to change programs at the start of a note or during a note. Change the program
during a rest instead. For example:

R I Z23 V4 ** change MIDI channel 4 to program 23 during rest
A4 ** play a note on channel 4

Check how your synthesizer interprets program numbers. For example, the cartridge programs on a DX7 can be accessed by
adding 32 to the cartridge program number. Cartridge program number 10 is specified by Z42.

As in MIDI, the Adagio timbre is a property of the voice (MIDI channel), so the timbre will not be
inherited by notes on a different channel; to change the timbre on multiple voices (channels), you must
explicitly notate each change.

8.1.10. Tempo
The length of a beat may be changed using a Tempo command:

!TEMPO n

where n indicates beats per minute. The exclamation mark tells Adagio that this is a special command
line rather than a note definition. A special command takes the place of a note specification. No other
attributes should be written on a line with a special command. The !TEMPO command is associated with
a time, computed as if the !TEMPO command were a note. The time attribute (T) of all succeeding notes
is now measured relative to the time of the !TEMPO command. The new tempo starts at the !TEMPO
command time and affects all succeeding notes. Durations specified in time units (for example U58,
N15) are not affected by the !TEMPO command, and numerical times (for example T851) are computed
relative to the time of the last !TEMPO command.

The !TEMPO command is fairly clever about default durations. If the last duration specified before the
!TEMPO command is symbolic (using one of ^,%, S, I, Q, H, or W), then the default duration for the node
after the !TEMPO command will be modified according to the tempo change. Consider the following
tempo change:

!TEMPO 60
A4 H
!TEMPO 120
G

In this example, the first note will last 2 seconds (2 beats at 60 beats per minute). The second note
inherits the duration (H) from the first note, but at 120 beats per minute, the second note will last only 1
second. If the duration had been specified U200 (also a duration of 2 seconds), the second note would
also last 2 seconds because the !TEMPO command does not affect times or durations specified
numerically in time units. If the duration is the sum of a symbolic and a numeric specification, the

Page 84 NYQUIST MANUAL

inherited duration after a !TEMPO command is undefined.

8.1.11. Rate
The !RATE command scales all times including those specified in hundredths of seconds. A rate of

100 means no change, 200 means twice as fast, and 50 means half as fast. For example, to make a piece
play 10% faster, you can add the following command at the beginning of the score:

!RATE 110

!RATE and !TEMPO commands combine, so
!RATE 200
!TEMPO 70

will play 70 beats per minute at double the normal speed, or 140 beats per minute. Like !TEMPO, the
time of the !RATE command is added to the time attribute of all following notes up to the next !TEMPO
or !RATE command.

Two !RATE commands do not combine, so a !RATE command only affects the rate until the next
!RATE command.

Although !TEMPO and !RATE can occur in the middle of a note (using N, T, etc.) they do not affect a
note already specified. This property allows multiple tempi to exist simultaneously (see Section 8.4.4).

8.2. Default Attributes
If an attribute is omitted, the previous one is used by default (with the exception of the time attribute).

The default values for the first note, which are inherited by succeeding notes until something else is
specified, are given below in Adagio notation:

Time T0
Pitch C4
Duration Q
Articulation #100
Loudness LFFF
Voice V1
Tempo !TEMPO 100
Rate !RATE 100

Control changes (including timbre or MIDI program, specified by Z) have no default value and are only
sent as specified in the score.

Important: the rules for determining when a command will play a note are as follows (and this has
changed slightly from previous versions):

1. If a special (!) command or nothing is specified, e.g. a blank line, do not play a note.

2. If R (for ‘‘rest’’) is specified, do not play a note.

3. Otherwise, if a pitch is specified, do play a note.

4. Otherwise, if no control changes (or program changes) are specified (so this is a command
with non-pitch attributes and no control changes), do play a note.

Another way to say this is ‘‘Special commands and commands with rests (R) do not play notes.
Otherwise, play a note if a pitch is specified or if no control is specified.’’

MIDI, ADAGIO, AND SEQUENCES Page 85

8.3. Examples
The following plays the first two bars of ‘‘Happy Birthday’’. Note that Adagio knows nothing of bar

lines, so the fact that the first note occurs on beat 3 or that the meter is three-four is of no consequence:
*Example 1 ** Happy Birthday tune (C major)
!TEMPO 120
G4 I. LF
G4 S
A4 Q
G4
C5
B4 H

The time attribute for the first note is zero (0). The second note will occur a dotted eighth later, etc.
Notice that no timbre or rate was specified. Adagio will provide reasonable default values of 1 and 100,
respectively.

The following example plays the first four bars of an exercise from Bartok’s Mikrokosmos (Vol. 1,
No. 12). An extra quarter note is inserted at the beginning of each voice in order to allow time to change
MIDI programs. The right hand part is played on voice (MIDI channel) 1 and the left hand part on voice
2. Notice the specification of the time attribute to indicate that voice 2 starts at time 0. Also, default
octaves are used to reduce typing.

*Example 2 ** Bartok
*voice 1, right hand
R Q Z10 V1 ** extra rest for program change
A4 H
B Q
C
D H
C
D Q
C
B
A
B
C
D
R

*voice 2, left hand
T0 R Q Z15 V2 ** extra rest for program change
G3 H
F Q
E
D H
E
D Q
E
F
G
F
E
D
R

The next example is the same piece expressed in a different manner, illustrating the interaction between

Page 86 NYQUIST MANUAL

the !TEMPO command and the time attribute. Recall that the time attribute is measured relative to the
time of the last !TEMPO command:

*Example 3 ** 4 measures in 2 sections
!Tempo 100
*Voice 1, Measures 1 & 2
R Q Z10 V1
A4 H
B Q
C
D H
C

*Voice 2, Measures 1 & 2
T0 R Q Z15 V2
G3 H
F Q
E
D H
E H

!TEMPO 100
*Voice 1, Measures 3 & 4
* note that Z10 is still in effect for V1
V1 D4 Q
C
B
A
B
C
D
R

*Voice 2, Measures 3 & 4
T0 V2 D3 Q
E
F
G
F
E
D
R

The piece is written in 4 sections. The first plays a rest followed by two measures, starting at time 0.
The next section changes the time back to zero and plays two measures of the left hand part (voice 2).
The next command (!TEMPO 100) sets the tempo to 100 (it already is) and sets the reference time to be
two measures into the piece. Therefore, the next note (D4) will begin measure 3. The D3 that begins the
last group of notes has a T0 attribute, so it will also start at measure 3. Notice how the !TEMPO
command can serve to divide a piece into sections.

The last example will show yet another way to express the same piece of music using the ‘‘Next’’
attribute. Only the first bar of music is given.

MIDI, ADAGIO, AND SEQUENCES Page 87

*Example 4 ** use of the Next attribute
!Tempo 100
R Q Z10 V1 N0
R Q Z15 V2

A4 H V1 N0
G3 V2

B4 Q V1 N0
F3 V2

C4 Q V1 N0
E3 V2

Here, each pair of lines represents two simultaneous notes. The N0 attribute forces the second line to start
at the same time as the first line of each pair. Because of the large intervals, octave numbers (3 and 4) are
necessary to override the default octave for these pitches.

8.4. Advanced Features
Beyond the simple notation described above, Adagio supports a number of features. (See also the next

chapter.)

8.4.1. Time Units and Resolution
The default time unit is 10ms (ten milliseconds or one centisecond or 100th of a second), but it is

possible to change the basic unit to 1ms, or 1000th of a second. The time unit can be specified by:

!CSEC centisecond time units = 100th

!MSEC millisecond time units = 1000th

The time unit remains in effect until the next !CSEC or !MSEC command.

8.4.2. Multiple Notes Per Line
Notes can be separated by commas or semicolons as well as by starting a new line. A comma is

equivalent to typing N0 and starting a new line. In other words, the next note after a comma will start at
the same time as the note before the comma. In general, use commas to separate the notes of a chord.

A semicolon is equivalent to starting a new line. In general, use semicolons to group notes in a melody.
Here is yet another rendition of the Bartok:

*Example 5 ** use of semicolons
!Tempo 100
R Q Z10 V1
A4 H; B Q; C; D H; C; D Q; C; B; A; B; C; D; R

T0 R Q Z15 V2
G3 H; F Q; E; D H; E; D Q; E; F; G; F; E; D; R

This example is similar to Example 2, except semicolons are used. Note how semicolons make the two
lines of music stand out. The next example is similar to Example 4, except commas are used and four
bars are notated. The music below is treated as a sequence of 2-note chords, with each chord on a
separate line:

Page 88 NYQUIST MANUAL

*Example 6 ** use of commas
!Tempo 100
R Q Z10 V1, R Q Z15 V2
A4 H V1, G3 V2
B4 Q V1, F3 V2
C4 V1, E3 V2
D4 H V1, D3 V2
C4 V1, E3 V2
D4 Q V1, D3 V2
C4 V1, E3 V2
B4 V1, F3 V2
A4 V1, G3 V2
B4 V1, F3 V2
C4 V1, E3 V2
D4 V1, D3 V2
R

8.4.3. Control Change Commands
Any control change can be specified using the syntax ‘‘~n(v)’’, where n is the controller number (0 -

127), and v is the value. In addition, Adagio has some special syntax for some of the commonly used
control changes (note that Pitch bend, Aftertouch, and MIDI Program Change are technically not MIDI
control changes but have their own special message format and status bytes):

K Portamento switch

M Modulation wheel

O Aftertouch

X Volume

Y Pitch bend

Z Program Change

The letter listed beside each control function is the Adagio command letter. For example, M23 is the
command for setting the modulation wheel to 23. Except for pitch bend, the portamento switch, and
MIDI Program Change, all values range from 0 to 127. Pitch bend is ‘‘off’’ or centered at 128, and has a
range from 0 to 255 (MIDI allows for more precision, but Adagio does not). Turn on portamento with
K127 and off with K0. Programs are numbered 1 to 128 to correspond to synthesizer displays.

About volume: Midi volume is just a control, and the Midi standard does not say what it means.
Typically it does what the volume pedal does; that is, it scales the amplitude in a continuously changeable
fashion. In contrast, Midi velocity, which is controlled by the L (loudness) attribute, is part of a Midi
note-on command and is fixed for the duration of the note. Typically, these two ways of controlling
loudness and amplitude operate independently. In some low-cost synthesizers the numbers seem to be
added together internally and volume changes are ignored after the note starts.

About pitch bend: Midi pitch bend is a number from 0 to 16383, where 8192 is the center position. To
convert to Midi, Adagio simply multiplies your number by 64, giving values from 0 to 16320. Note that
Y128 translates exactly to 8192. The meaning of pitch bend depends upon your synthesizer and its
setting. Most synthesizers let you specify a ‘‘pitch bend range.’’ A range of one semitone means that

MIDI, ADAGIO, AND SEQUENCES Page 89

Y255 will produce a bend of approximately one semitone up, and Y0 will bend one semitone down. If
the range is 12 semitones, then the same Y255 will bend an octave. Typically, pitch bend is exponential,
so each increment in the pitch bend value will bend an equal number of cents in pitch.

Control changes can be part of a note specification or independent. In the following example, a middle
C is played with a modulation wheel setting of 50 and a pitch bend of 120. Then, at 10 unit intervals, the
pitch bend is decreased by 10. The last line sets the portamento time (controller 5) to 80:

*Example 7
C4 LMF M50 Y120 U100 N10
Y110 N10; Y100 N10; Y90 N10; Y80 N10
Y70 N10; Y60 N10; Y50 N10
~5(80)

See Section 8.2 on page 84 for rules on whether or not a command will play a note.

8.4.4. Multiple Tempi
Writing a piece with multiple tempi requires no new commands; you just have to be clever in the use of

Tempo and Time. The following plays a 7 note diatonic scale on voice 1, and a 12 note chromatic scale
on voice 2:

*Example 8 ** multiple tempi
!TEMPO 70
V1 C4; D; E; F; G; A; B
T0 R N0

!TEMPO 120
V2 C4; CS; D; DS; E; F; FS; G; GS; A; AS; B

!TEMPO 100
V1 C5, V2 C5

The third line plays the 7-note diatonic scale on voice 1. The next line contains the tricky part: notice
that the time is set back to zero, there is a rest, and a next (N) attribute is used to specify that the next
default time will be at the same time as the current one. This is tricky because a !TEMPO command
cannot have a time (T0) attribute, and a T0 by itself would create a note with a duration. T0 R N0 says:
‘‘go to time 0, do not play a note, and do not advance the time before the next command’’. Thus, the time
of the !TEMPO 120 command is zero. After the 12 note scale, the tempo is changed to 100 and a final
note is played on each voice. A little arithmetic will show that 7 notes at tempo 70 and 12 notes at tempo
120 each take 6 seconds, so the final notes (C5) of each scale will happen at the same time.

8.4.5. MIDI Synchronization
The Adagio program (but not Nyquist) can synchronize with external devices using MIDI real time

messages. Thus, Adagio has a !CLOCK command. This command is currently of no use to Nyquist users
but is documented here for completeness (it’s part of the language syntax even if it does not do anything).

Since Adagio supports multiple tempi, and Midi clock is based on beats, it is necessary to be explicit in
the score about where the clock should start and what is the duration of a quarter note. The !CLOCK
command in Adagio turns on a 24 pulse-per-quarter (PPQ) clock at the current tempo and time:

!TEMPO 100
!CLOCK

Page 90 NYQUIST MANUAL

A !CLOCK command must also be inserted for each tempo change that is to be reflected in the Midi
clock. Typically, each !TEMPO command will be followed by a !CLOCK command.
Clock commands and thus tempo changes can take place at arbitrary times. It is assumed that tempo changes on an exact 24th of
a beat subdivision (for example, exactly on a beat). If not, the tempo change will take place on the nearest exact 24th of a beat
subdivision. This may be earlier or later than the requested time.

8.4.6. System Exclusive Messages
Adagio has a definition facility that makes it possible to send system exclusive parameters. Often,

there are parameters on Midi synthesizers that can only be controlled by system exclusive messages.
Examples include the FM ratio and LFO rate on a DX7 synthesizer. The following example defines a
macro for the DX7 LFO rate and then shows how the macro is used to set the LFO rate for a B-flat whole
note in the score. The macro definition is given in hexadecimal, except v is replaced by the channel
(voice) and %1 is replaced by the first parameter. A macro is invoked by writing ‘‘~’’ followed by the
macro name and a list of parameters:

!DEF LFO F0 43 0v 01 09 %1 F7
Bf5 W ~LFO(25)

In general, the !DEF command can define any single MIDI message including a system exclusive
message. The message must be complete (including the status byte), and each !DEF must correspond to
just one message. The symbol following !DEF can be any name consisting of alphanumeric characters.
Following the name is a hexadecimal string (with optional spaces), all on one line. Embedded in the
string may be the following special characters:

v Insert the 4-bit voice (MIDI channel) number. If v occurs in the place of a high-order
hexadecimal digit, replace v with 0v so that the channel number is always placed in
the low-order 4 bits of a data byte. In other words, v is padded if necessary to fall
into the low-order bits.

%n Insert a data byte with the low-order 7 bits of parameter number n. Parameters are
numbered 1 through 9. If the parameter value is greater than 127, the high-order bits
are discarded.

^n Insert a data byte with bits 7 through 13 of parameter number n. In other words, shift
the value right 7 places then clear all but the first 7 bits. Note that 14-bit numbers can
be encoded by referencing the same parameter twice; for example, %4^4 will insert
the low-order followed by the high-order parts of parameter 4 into two successive
data bytes.

Parameters are separated by commas, but there may be no spaces. The maximum number of
parameters allowed is 9. Here is an example of definitions to send a full-resolution pitch bend command
and to send a system exclusive command to change a DX7 parameter4.

4My TX816 Owner’s Manual gives an incorrect format for the change parameter sysex command (according to the manual,
there is no data in the message!) I am assuming that the data should be the last byte before the EOX and that there is no byte
count. If you are reading this, assume that I have not tested this guess, nor have I tested this example.

MIDI, ADAGIO, AND SEQUENCES Page 91

* Define macro for pitch bend commands:
!DEF bend Ev %1 ^1

A ~bend(8192) ** 8192 is "pitch bend off"

* Change the LFO SPEED:
* SYSEX = F0, Yamaha = 43, Substatus/Channel = 1v,
* Group# = 01, Parameter# = 9, Data = 0-99, EOX = F7
!DEF lfospeed F0 43 1v 01 09 %1 F7

* now use the definitions:
G4 ~bend(7567) N40
~lfospeed(30) N35

8.4.7. Control Ramps
The !RAMP command can specify a smooth control change from one value to another. It consists of a

specification of the starting and ending values of some control change, a duration specifying how often to
send a new value, and a duration specifying the total length of the ramp.

!RAMP X10 X100 Q W2
!RAMP ~23(10) ~23(50) U20 W
!RAMP ~lfo(15) ~lfo(35) U10

The first line says to ramp the volume control (controller number 7) from 10 to 100, changing at each
quarter note for the duration of two whole notes. The second line says to ramp controller number 23 from
value 10 to value 50, sending a new control change message every 20 time units. The overall duration of
the ramp should be equivalent to a whole note (W). As shown in the third line, even system exclusive
messages controlled by parameters can be specified. If the system exclusive message has more than one
parameter, only one parameter may be ‘‘ramped’’; the others must remain the same. For example, the
following would ramp the second parameter:

!RAMP ~mysysex(4,23,75) ~mysysex(4,100,75) U10 W

A rather curious and extreme use of macros and ramps is illustrated in the following example. The noteon macro starts a note,
and noteoff ends it. Ramps can now be used to emit a series of notes with changing pitches or velocities. Since Adagio has
no idea that these macros are turning on notes, it is up to the programmer to turn them off!

!DEF noteon 9v %1 %2
!DEF noteoff 8v %1 %2
~noteon(48,125)
~noteoff(48,126)
* turn on some notes
!RAMP ~noteon(36,125) ~noteon(60,125) Q W NW
* turn them off
!RAMP ~noteoff(60,50) ~noteoff(36,50) Q W NW

8.4.8. The !End Command
The special command !END marks the end of a score. Everything beyond that is ignored, for example:

* this is a score
C; D; E; F; G W
!END
since the score has ended, this text will be ignored

Page 92 NYQUIST MANUAL

8.4.9. Calling C Routines
It is possible to call C routines from within Adagio scores when using specially linked versions, but this

feature is disabled in Nyquist. The syntax is described here for completeness.

The !CALL command calls a C routine that can in turn invoke a complex sequence of operations.
Below is a call to a trill routine, which is a standard routine in Adagio. The parameters are the base pitch
of the trill, the total duration of the trill, the interval in semitones, the duration of each note of the trill, and
the loudness. Notice that both numbers and Adagio notation can be used as parameters:

!CALL trill(A5,W,2,S,Lmf) T278 V1

The parameter list should have no spaces, and parameters are separated by commas. Following the close
parenthesis, you may specify other attributes such as the starting time and voice as shown in the example
above.

A parameter may be an Adagio pitch specification, an Adagio duration, an Adagio loudness, a number,
or an ASCII character within single quotes, e.g. ’a’ is equivalent to 97 because 97 is the decimal
encoding of ‘‘a’’ in ASCII.

The !CALL may be followed by a limited set of attributes. These are time (T), voice (V), and next time
(N). The !CALL is made at the current time if no time is specified, and the time of the next adagio
command is the time of the !CALL unless a next time is specified. In other words, the default is N0.

8.4.10. Setting C Variables
In addition to calling C routines, there is another way in which scores can communicate with C. As

with !CALL, specific C code must be linked before these commands can be used, and this is not
supported in Nyquist. The !SETI command sets an integer variable to a value, and the !SETV
command sets an element of an integer array. For example, the next line sets the variable delay to 200
and sets transposition[5] to -4 at time 200:

!SETI delay 200
!SETV transposition 5 -4 T200

As with the !CALL command, these commands perform their operations at particular times according to
their place in the Adagio score. This makes it very easy to implement time-varying parameters that
control various aspects of an interactive music system.

LINEAR PREDICTION ANALYSIS AND SYNTHESIS Page 93

9. Linear Prediction Analysis and Synthesis
Nyquist provides functions to perform Linear Prediction Coding (LPC) analysis and synthesis. In

simple terms, LPC analysis assumes that a sound is the result of an all-pole filter applied to a source with
a flat spectrum. LPC is good for characterizing the general spectral shape of a signal, which may be
time-varying as in speech sounds. For synthesis, any source can be filtered, allowing the general spectral
shape of one signal (used in analysis) to be applied to any source (used in synthesis). A popular effect is
to give vowel-like spectra to musical tones, creating an artificial (or sometimes natural) singing voice.

Examples of LPC analysis and synthesis can be found in the file lpc_tutorial.htm, which is part
of the standard Nyquist release.

As with FFT processing, LPC analysis takes a sound as input and returns a stream of frames. Frames
are returned from an object using the :next selector just as with FFT frames. An LPC frame is a list
consisting of: RMS1, the energy of the input signal, RMS2, the energy of the residual signal, ERR, the
square root of RMS1/RMS2, and FILTER-COEFS, an array of filter coefficients. To make code more
readable and to avoid code dependence on the exact format of a frame, the functions
lpc-frame-rms1, lpc-frame-rms2, lpc-frame-err, and lpc-frame-filter-coefs
can be applied to a frame to obtain the respective fields.

The z transform of the filter is H(z) = 1/A(z), where A(z) is a polynomial of the form A(z) = 1 + a1z +
a2z + ... + apz. The FILTER-COEFS array has the form #(ap ap-1 ... a3 a2 a1).

The file lpc.lsp defines some useful classes and functions. The file is not automatically loaded with
Nyquist, so you must execute (load "lpc") before using them.

9.1. LPC Classes and Functions
(make-lpanal-iterator sound framedur skiptime npoles)

Makes an iterator object, an instance of lpanal-class, that returns LPC frames from
successive frames of samples in sound. The duration (in seconds) of each frame is given by
framedur, a FLONUM. The skip size (in seconds) between successive frames is given by skiptime,
a FLONUM. Typical values for framedur and skiptime are 0.08 and 0.04, giving 25 frames per
second and a 50% frame overlap. The number of poles is given by npoles, a FIXNUM. The result
is an object that responds to the :next selector by returning a frame as described above. NIL is
returned when sound terminates. (Note that one or more of the last analysis windows may be
padded with zeros. NIL is only returned when the corresponding window would begin after the
termination time of the sound.)

(make-lpc-file-iterator filename)
Another way to get LPC frames is to read them from a file. This function opens an ASCII file
containing LPC frames and creates an iterator object, an instance of class lpc-file-class to
access them. Create a file using save-lpc-file (see below).

(save-lpc-filelpc-iterator filename)
Create a file containing LPC frames. This file can be read by make-lpc-file-iterator
(see above).

(show-lpc-data lpc-iterator iniframe endframe [poles?])
Print values of LPC frames from an LPC iterator object. The object is lpc-iterator, which is
typically an instance of lpanal-class or lpc-file-class. Frames are numbered from
zero, and only files starting at iniframe (a FIXNUM) and ending before endframe (also a
FIXNUM) are printed. By default, only the values for RMS1, RMS2, and ERR are printed, but if

Page 94 NYQUIST MANUAL

optional parameter poles? is non-NIL, then the LPC coefficients are also printed.

(allpoles-from-lpcsnd lpc-frame)
A single LPC frame defines a filter. Use allpoles-from-lpc to apply this filter to snd, a
SOUND. To obtain lpc-frame, a LIST containing an LPC frame, either send :next to an LPC
iterator, or use nth-frame (see below). The result is a SOUND whose duration is the same as
that of snd.

(lpreson snd lpc-iterator skiptime)
Implements a time-varying all-pole filter controlled by a sequence of LPC frames from an
iterator. The SOUND to be filtered is snd, and the source of LPC frames is lpc-iterator, typically
an instance of lpanal-class or lpc-file-class. The frame period (in seconds) is given
by skiptime (a FLONUM). This number does not have to agree with the skiptime used to analyze
the frames. (Greater values will cause the filter evolution slow down, and smaller values will
cause it to speed up.) The result is a SOUND. The duration of the result is the minimum of the
duration of snd and that of the sequence of frames.

(lpc-frame-rms1 frame)
Get the energy of the input signal from a frame.

(lpc-frame-rms2 frame)
Get the energy of the residual from a frame.

(lpc-frame-err frame)
Get the square root of RMS1/RMS2 from a frame.

(lpc-frame-filter-coefs frame)
Get the filter coefficients from a frame.

9.2. Low-level LPC Functions
The lowest-level Nyquist functions for LPC are

• snd-lpanal for analysis,

• snd-allpoles, an all-pole filter with fixed coefficients, and

• snd-lpreson, an all-pole filter that takes frames from an LPC iterator.

(snd-lpanal samps npoles)
Compute an LPC frame with npoles (a FIXNUM) poles from an ARRAY of samples (FLONUMS).
Note that snd-fetch-array can be used to fetch a sequence of frames from a sound.
Ordinarily, you should not use this function. Use make-lpanal-iterator instead.

(snd-allpolessnd lpc-coefs gain)
A fixed all-pole filter. The input is snd, a SOUND. The filter coefficients are given by lpc-coefs
(an ARRAY), and the filter gain is given by gain, a FLONUM. The result is a SOUND whose
duration matches that of snd. Ordinarily, you should use allpoles-from-lpc instead (see
above).

(snd-lpreson snd lpc-iterator skiptime)
This function is identical to lpreson (see above).

DEVELOPING AND DEBUGGING IN NYQUIST Page 95

10. Developing and Debugging in Nyquist
There are a number of tools, functions, and techniques that can help to debug Nyquist programs. Since

these are described in many places throughout this manual, this chapter brings together many suggestions
and techniques for developing code and debugging. You really should read this chapter before you spend
too much time with Nyquist. Many problems that you will certainly run into are addressed here.

10.1. Debugging
Probably the most important debugging tool is the backtrace. When Nyquist encounters an error, it

suspends execution and prints an error message. To find out where in the program the error occurred and
how you got there, start by typing (bt). This will print out the last several function calls and their
arguments, which is usually sufficient to see what is going on.

In order for (bt) to work, you must have a couple of global variables set: *tracenable* is
ordinarily set to NIL. If it is true, then a backtrace is automatically printed when an error occurs;
breakenable must be set to T, as it enables the execution to be suspended when an error is
encountered. If *breakenable* is NIL (false), then execution stops when an error occurs but the stack
is not saved and you cannot get a backtrace. Finally, bt is just a macro to save typing. The actual
backtrace function is baktrace, which takes an integer argument telling how many levels to print. All
of these things are set up by default when you start Nyquist.

Since Nyquist sounds are executed with a lazy evaluation scheme, some errors are encountered when
samples are being generated. In this case, it may not be clear which expression is in error. Sometimes, it
is best to explore a function or set of functions by examining intermediate results. Any expression that
yields a sound can be assigned to a variable and examined using one or more of: s-plot,
snd-print-tree, and of course play. The snd-print-tree function prints a lot of detail about
the inner representaion of the sound. Keep in mind that if you assign a sound to a global variable and then
look at the samples (e.g. with play or s-plot), the samples will be retained in memory. At 4 bytes per
sample, a big sound may use all of your memory and cause a crash.

Another technique is to use low sample rates so that it is easier to plot results or look at samples
directly. The calls:

(set-sound-srate 100)
(set-control-srate 100)

set the default sample rates to 100, which is too slow for audio, but useful for examining programs and
results. The function

(snd-samples sound limit)

will convert up to limit samples from sound into a Lisp array. This is another way to look at results in
detail.

The trace function is sometimes useful. It prints the name of a function and its arguments everytimg
the function is called, and the result is printed when the function exits. To trace the osc function, type:

(trace osc)

and to stop tracing, type (untrace osc).

If a variable needs a value or a function is undefined, you can fix the error (by setting the variable or
loading the function definition) and keep going. Use (co), short for (continue) to reevaluate the

Page 96 NYQUIST MANUAL

variable or function and continue execution.

When you finish debugging a particular call, you can ‘‘pop’’ up to the top level by typing (top), a
short name for (top-level).

10.2. Useful Functions
(grindef name)

Prints a formatted listing of a lisp function. This is often useful to quickly inspect a function
without searching for it in source files. Do not forget to quote the name, e.g. (grindef
’prod).

(args name)
Similar to grindef, this function prints the arguments to a function. This may be faster than
looking up a function in the documentation if you just need a reminder. For example, (args
’lp) prints ‘‘(LP S C),’’ which may help you to remember that the arguments are a sound (S)
followed by the cutoff (C) frequency.

The following functions are useful short-cuts that might have been included in XLISP. They are so
useful that they are defined as part of Nyquist.

(incf symbol)
Increment symbol by one. This is a macro, and symbol can be anything that can be set by setf.
Typically, symbol is a variable: ‘‘(incf i),’’ but symbol can also be an array element:
‘‘(incf (aref myarray i)).’’

(decf symbol)
Decrement symbol by one. (See incf, above.)

(push val lis)
Push val onto lis (a Lisp list). This is a macro that is equivalent to writing (setf lis (cons
val lis)).

(pop lis)
Remove (pop) the first item from lis (a Lisp list). This is a macro that is equivalent to writing
(setf lis (cdr lis)). Note that the remaining list is returned, not the head of the list that has
been popped. Retrieve the head of the list (i.e. the top of the stack) using first or, equivalently,
car.

The following macros are useful control constructs.

(while test stmt1 stmt2 ...)
A conventional ‘‘while’’ loop. If test is true, perform the statements (stmt1, stmt2, etc.) and
repeat. If test is false, return. This expression evaluates to NIL unless the expression (return
expr) is evaluated, in which case the value of expr is returned.

(when test action)
A conventional ‘‘if-then’’ statement. If test is true, action is evaluated and returned. Otherwise,
NIL is returned. (Use if or cond to implement ‘‘if-then-else’’ and more complex conditional
forms.

Sometimes it is important to load files relative to the current file. For example, the lib/piano.lsp
library loads data files from the lib/piano directory, but how can we find out the full path of lib?
The solution is:

(current-path)
Returns the full path name of the file that is currently being loaded (see load). Returns NIL if no
file is being loaded.

Finally, there are some helpful math functions:

DEVELOPING AND DEBUGGING IN NYQUIST Page 97

(real-randomfrom to)
Returns a random FLONUM between from and to. (See also rrandom, which is equivalent to
(real-random 0 1)).

(power x y)
Returns x raised to the y power.

Page 98 NYQUIST MANUAL

XMUSIC AND ALGORITHMIC COMPOSITION Page 99

11. Xmusic and Algorithmic Composition
Several Nyquist libraries offer support for algorithmic composition. Xmusic is a library for generating

sequences and patterns of data. Included in Xmusic is the score-gen macro which helps to generate
scores from patterns. Another important facility is the distributions.lsp library, containing many
different random number generators.

11.1. Xmusic Basics
Xmusic is inspired by and based on Common Music by Rick Taube. Currently, Xmusic only

implements patterns and some simple support for scores to be realized as sound by Nyquist. In contrast,
Common Music supports MIDI and various other synthesis languages and includes a graphical interface,
some visualization tools, and many other features. Common Music runs in Common Lisp and Scheme,
but not XLISP, which is the base language for Nyquist.

Xmusic patterns are objects that generate data streams. For example, the cycle-class of objects
generate cyclical patterns such as "1 2 3 1 2 3 1 2 3 ...", or "1 2 3 4 3 2 1 2 3 4 ...". Patterns can be used to
specify pitch sequences, rhythm, loudness, and other parameters.

To use any of the Xmusic functions, you must manually load xm.lsp, that is, type (load "xm") to
Nyquist. To use a pattern object, you first create the pattern, e.g.

(setf pitch-source (make-cycle (list c4 d4 e4 f4)))

After creating the pattern, you can access it repeatedly with next to generate data, e.g.
(play (seqrep (i 13) (pluck (next pitch-source) 0.2)))

This will create a sequence of notes with the following pitches: c, d, e, f, c, d, e, f, c, d, e, f, c. If you
evaluate this again, the pitch sequence will continue, starting on "d".

It is very important not to confuse the creation of a sequence with its access. Consider this example:
(play (seqrep (i 13)

(pluck (next (make-cycle (list c4 d4 e4 f4))) 0.2)))

This looks very much like the previous example, but it only repeats notes on middle-C. The reason is that
every time pluck is evaluated, make-cycle is called and creates a new pattern object. After the first
item of the pattern is extracted with next, the cycle is not used again, and no other items are generated.

To summarize this important point, there are two steps to using a pattern. First, the pattern is created
and stored in a variable using setf. Second, the pattern is accessed (multiple times) using next.

Patterns can be nested, that is, you can write patterns of patterns. In general, the next function does
not return patterns. Instead, if the next item in a pattern is a (nested) pattern, next recursively gets the
next item of the nested pattern.

While you might expect that each call to next would advance the top-level pattern to the next item,
and descend recursively if necessary to the inner-most nesting level, this is not how next works. Instead,
next remembers the last top-level item, and if it was a pattern, next continues to generate items from
that same inner pattern until the end of the inner pattern’s period is reached. The next paragraph explains
the concept of the period.

The data returned by a pattern object is structured into logical groups called periods. You can get an
entire period (as a list) by calling (next pattern t). For example:

Page 100 NYQUIST MANUAL

(setf pitch-source (make-cycle (list c4 d4 e4 f4)))
(next pitch-source t)

This prints the list (60 62 64 65), which is one period of the cycle.

You can also get explicit markers that delineate periods by calling (send pattern :next). In this
case, the value returned is either the next item of the pattern, or the symbol +eop+ if the end of a period
has been reached. What determines a period? This is up to the specific pattern class, so see the
documentation for specifics. You can override the ‘‘natural’’ period using the keyword :for, e.g.

(setf pitch-source (make-cycle (list c4 d4 e4 f4) :for 3))
(next pitch-source t)
(next pitch-source t)

This prints the lists (60 62 64) (65 60 62). Notice that these periods just restructure the stream
of items into groups of 3.

Nested patterns are probably easier to understand by example than by specification. Here is a simple
nested pattern of cycles:

(setf cycle-1 (make-cycle ’(a b c)))
(setf cycle-2 (make-cycle ’(x y z)))
(setf cycle-3 (make-cycle (list cycle-1 cycle-2)))
(dotimes (i 9) (format t "~A " (next cycle-3)))

This will print "A B C X Y Z A B C". Notice that the inner-most cycles cycle-1 and cycle-2
generate a period of items before the top-level cycle-3 advances to the next pattern.

Before describing specific pattern classes, there are several optional parameters that apply in the
creating of any pattern object. These are:

:for The length of a period. This overrides the default by providing a
numerical length. The value of this optional parameter may be a pattern
that generates a sequence of integers that determine the length of each
successive period. A period length may not be negative, but it may be
zero.

:name A pattern object may be given a name. This is useful if the :trace
option is used.

:trace If non-null, this optional parameter causes information about the pattern
to be printed each time an item is generated from the pattern.

The built-in pattern classes are described in the following section.

11.2. Pattern Classes

11.2.1. cycle
The cycle-class iterates repeatedly through a list of items. For example, two periods of

(make-cycle ’(a b c)) would be (A B C) (A B C).

(make-cycle items [:for for] [:name name] [:trace trace])
Make a cycle pattern that iterates over items. The default period length is the length of items. (See
above for a description of the optional parameters.) If items is a pattern, a period of the pattern
becomes the list from which items are generated. The list is replaced every period of the cycle.

XMUSIC AND ALGORITHMIC COMPOSITION Page 101

11.2.2. line
The line-class is similar to the cycle class, but when it reaches the end of the list of items, it

simply repeats the last item in the list. For example, two periods of (make-line ’(a b c)) would
be (A B C) (C C C).

(make-line items [:for for] [:name name] [:trace trace])
Make a line pattern that iterates over items. The default period length is the length of items. As
with make-cycle, items may be a pattern. (See above for a description of the optional
parameters.)

11.2.3. random
The random-class generates items at random from a list. The default selection is uniform random

with replacement, but items may be further specified with a weight, a minimum repetition count, and a
maximum repetition count. Weights give the relative probability of the selection of the item (with a
default weight of one). The minimum count specifies how many times an item, once selected at random,
will be repeated. The maximum count specifies the maximum number of times an item can be selected in
a row. If an item has been generated n times in succession, and the maximum is equal to n, then the item
is disqualified in the next random selection. Weights (but not currently minima and maxima) can be
patterns. The patterns (thus the weights) are recomputed every period.

(make-randomitems [:for for] [:name name] [:trace trace])
Make a random pattern that selects from items. Any (or all) element(s) of items may be lists of the
following form: (value [:weight weight] [:min mincount] [:max maxcount], where
value is the item (or pattern) to be generated, weight is the relative probability of selecting this
item, mincount is the minimum number of repetitions when this item is selected, and maxcount is
the maximum number of repetitions allowed before selecting some other item. The default period
length is the length of items. If items is a pattern, a period from that pattern becomes the list from
which random selections are made, and a new list is generated every period.

11.2.4. palindrome
The palindrome-class repeatedly traverses a list forwards and then backwards. For example, two

periods of (make-palindrome ’(a b c)) would be (A B C C B A) (A B C C B A). The
:elide keyword parameter controls whether the first and/or last elements are repeated:

(make-palindrome ’(a b c) :elide nil)
;; generates A B C C B A A B C C B A ...

(make-palindrome ’(a b c) :elide t)
;; generates A B C B A B C B ...

(make-palindrome ’(a b c) :elide :first)
;; generates A B C C B A B C C B ...

(make-palindrome ’(a b c) :elide :last)
;; generates A B C B A A B C B A ...

(make-palindrome items [:elide elide] [:for for] [:name name] [:trace trace])
Generate items from list alternating in-order and reverse-order sequencing. The keyword
parameter elide can have the values :first, :last, t, or nil to control repetition of the first
and last elements. The elide parameter can also be a pattern, in which case it is evaluated every
period. One period is one complete forward and backward traversal of the list. If items is a
pattern, a period from that pattern becomes the list from which random selections are made, and a

Page 102 NYQUIST MANUAL

new list is generated every period.

11.2.5. heap
The heap-class selects items in random order from a list without replacement, which means that all

items are generated once before any item is repeated. For example, two periods of (make-heap ’(a
b c)) might be (C A B) (B A C).

(make-heap items [:for for] [:name name] [:trace trace])
Generate items randomly from list without replacement. The period length is the length of items.
If items is a pattern, a period from that pattern becomes the list from which random selections are
made, and a new list is generated every period.

11.2.6. copier
The copier-class makes copies of periods from a sub-pattern. For example, three periods of

(make-copier (make-cycle ’(a b c) :for 1) :repeat 2 :merge t) would be (A
A) (B B) (C C). Note that entire periods (not individual items) are repeated, so in this example the
:for keyword was used to force periods to be of length one so that each item is repeated by the
:repeat count.

(make-copiersub-pattern [:repeat repeat] [:merge merge] [:for for] [:name
name] [:trace trace])
Generate a period from sub-pattern and repeat it repeat times. If merge is false (the default), each
repetition of a period from sub-pattern results in a period by default. If merge is true (non-null),
then all repeat repetitions of the period are merged into one result period by default. If the :for
keyword is used, the same items are generated, but the items are grouped into periods determined
by the :for parameter. If the :for parameter is a pattern, it is evaluated every result period.
The repeat and merge values may be patterns that return a repeat count and a boolean value,
respectively. If so, these patterns are evaluated initially and after each repeat copies are made
(independent of the :for keyword parameter, if any). The repeat value returned by a pattern can
also be negative. A negative number indicates how many periods of sub-pattern to skip. After
skipping these patterns, new repeat and merge values are generated.

11.2.7. accumulate
The accumulate-class forms the sum of numbers returned by another pattern. For example, each

period of (make-accumulate (make-cycle ’(1 2 -3))) is (1 3 0). The default output
period length is the length of the input period.

(make-accumulatesub-pattern [:for for] [:max maximum] [:min minimum] [:name
name] [:trace trace])
Keep a running sum of numbers generated by sub-pattern. The default period lengths match the
period lengths from sub-pattern. If maximum (a pattern or a number) is specified, and the running
sum exceeds maximum, the running sum is reset to maximum. If minimum (a pattern or a number)
is specified, and the running sum falls below minimum, the running sum is reset to minimum. If
minimum is greater than maximum, the running sum will be set to one of the two values.

XMUSIC AND ALGORITHMIC COMPOSITION Page 103

11.2.8. sum
The sum-class forms the sum of numbers, one from each of two other patterns. For example, each

period of (make-sum (make-cycle ’(1 2 3)) (make-cycle ’(4 5 6))) is (5 7 9).
The default output period length is the length of the input period of the first argument. Therefore, the first
argument must be a pattern, but the second argument can be a pattern or a number.

(make-sumx y [:for for] [:name name] [:trace trace])
Form sums of items (which must be numbers) from pattern x and pattern or number y. The
default period lengths match the period lengths from x.

11.2.9. product
The product-class forms the product of numbers, one from each of two other patterns. For

example, each period of (make-product (make-cycle ’(1 2 3)) (make-cycle ’(4 5
6))) is (4 10 18). The default output period length is the length of the input period of the first
argument. Therefore, the first argument must be a pattern, but the second argument can be a pattern or a
number.

(make-productx y [:for for] [:name name] [:trace trace])
Form products of items (which must be numbers) from pattern x and pattern or number y. The
default period lengths match the period lengths from x.

11.2.10. eval
The eval-class evaluates an expression to produce each output item. The default output period

length is 1.

(make-evalexpr [:for for] [:name name] [:trace trace])
Evaluate expr to generate each item. If expr is a pattern, each item is generated by getting the next
item from expr and evaluating it.

11.2.11. length
The length-class generates periods of a specified length from another pattern. This is similar to

using the :for keyword, but for many patterns, the :for parameter alters the points at which other
patterns are generated. For example, if the palindrome pattern has an :elide pattern parameter, the
value will be computed every period. If there is also a :for parameter with a value of 2, then :elide
will be recomputed every 2 items. In contrast, if the palindrome (without a :for parameter) is embedded
in a length pattern with a lenght of 2, then the periods will all be of length 2, but the items will come from
default periods of the palindrome, and therefore the :elide values will be recomputed at the beginnings
of default palindrome periods.

(make-length pattern length-pattern [:name name] [:trace trace])
Make a pattern of class length-class that regroups items generated by a pattern according to
pattern lengths given by length-pattern. Note that length-pattern is not optional: There is no
default pattern length and no :for keyword.

Page 104 NYQUIST MANUAL

11.2.12. window
The window-class groups items from another pattern by using a sliding window. If the skip value is

1, each output period is formed by dropping the first item of the previous perioda and appending the next
item from the pattern. The skip value and the output period length can change every period. For a simple
example, if the period length is 3 and the skip value is 1, and the input pattern generates the sequence A,
B, C, ..., then the output periods will be (A B C), (B C D), (C D E), (D E F),

(make-window pattern length-pattern skip-pattern [:name name] [:trace trace])
Make a pattern of class window-class that regroups items generated by a pattern according to
pattern lengths given by length-pattern and where the period advances by the number of items
given by skip-pattern. Note that length-pattern is not optional: There is no default pattern length
and no :for keyword.

11.2.13. markov
The markov-class generates items from a Markov model. A Markov model generates a sequence of

states according to rules which specify possible future states given the most recent states in the past. For
example, states might be pitches, and each pitch might lead to a choice of pitches for the next state. In the
markov-class, states can be either symbols or numbers, but not arbitrary values or patterns. This
makes it easier to specify rules. However, symbols can be mapped to arbitrary values including pattern
objects, and these become the actual generated items. By default, all future states are weighted equally,
but weights may be associated with future states. A Markov model must be initialized with a sequence of
past states using the :past keyword. The most common form of Markov model is a "first order Markov
model" in which the future item depends only upon one past item. However, higher order models where
the future items depend on two or more past items are possible. A "zero-order" Markov model, which
depends on no past states, is essentially equivalent to the random pattern. As an example of a first-order
Markov pattern, two periods of (make-markov ’((a -> b c) (b -> c) (c -> a))
:past ’(a)) might be (C A C) (A B C).

(make-markovrules [:past past] [:produces produces] [:for for] [:name name]
[:trace trace])
Generate a sequence of items from a Markov process. The rules parameter has the form: (prev1
prev2 ... prevn -> next1 next2 ... nextn) where prev1 through prevn represent a
sequence of most recent (past) states. The symbol * is treated specially: it matches any previous
state. If prev1 through prevn (which may be just one state as in the example above) match the
previously generated states, this rule applies. Note that every rule must specify the same number
of previous states; this number is known as the order of the Markov model. The first rule in rules
that applies is used to select the next state. If no rule applies, the next state is NIL (which is a
valid state that can be used in rules). Assuming a rule applies, the list of possible next states is
specified by next1 through nextn. Notice that these are alternative choices for the next state, not a
sequence of future states, and each rule can have any number of choices. Each choice may be the
state itself (a symbol or a number), or the choice may be a list consisting of the state and a weight.
The weight may be given by a pattern, in which case the next item of the pattern is obtained every
time the rule is applied. For example, this rules says that if the previous states were A and B, the
next state can be A with a weight of 0.5 or C with an implied weight of 1: (A B -> (A 0.5)
C). The default length of the period is the length of rules. The past parameter must be provided.
It is a list of states whose length matches the order of the Markov model. The keyword parameter
produces may be used to map from state symbols or numbers to other values or patterns. The
parameter is a list of alternating symbols and values. For example, to map A to 69 and B to 71,
use (list ’a 69 ’b 71). You can also map symbols to patterns, for example (list ’a
(make-cycle ’(57 69)) ’b (make-random ’(59 71))). The next item of the
pattern is is generated each time the Markov model generates the corresponding state. Finally,

XMUSIC AND ALGORITHMIC COMPOSITION Page 105

the produces keyword can be :eval, which means to evaluate the Markov model state. This
could be useful if states are Nyquist global variables such as C4, CS4, D4,]..., which
evaluate to numerical values (60, 61, 62,

(markov-create-rulessequence order [generalize])
Generate a set of rules suitable for the make-markov function. The sequence is a ‘‘typical’’
sequence of states, and order is the order of the Markov model. It is often the case that a sample
sequence will not have a transition from the last state to any other state, so the generated Markov
model can reach a ‘‘dead end’’ where no rule applies. This might lead to an infinite stream of
NIL’s. To avoid this, the optional parameter generalize can be set to t (true), indicating that there
should be a fallback rule that matches any previous states and whose future states are weighted
according to their frequency in sequence. For example, if sequence contains 5 A’s, 5 B’s and 10
G’s, the default rule will be (* -> (A 5) (B 5) (G 10)). This rule will be appended to
the end so it will only apply if no other rule does.

11.3. Random Number Generators
The distributions.lsp library implements random number generators that return random values

with various probability distributions. Without this library, you can generate random numbers with
uniform distributions. In a uniform distribution, all values are equally likely. To generate a random
integer in some range, use random. To generate a real number (FLONUM) in some range, use
real-random (or rrandom if the range is 0-1). But there are other interesting distributions. For
example, the Gaussian distribution is often used to model real-world errors and fluctuations where values
are clustered around some central value and large deviations are more unlikely than small ones. See
Dennis Lorrain, "A Panoply of Stochastic ’Canons’," Computer Music Journal vol. 4, no. 1, 1980, pp.
53-81.

In most of the random number generators described below, there are optional parameters to indicate a
maximum and/or minimum value. These can be used to truncate the distribution. For example, if you
basically want a Gaussian distribution, but you never want a value greater than 5, you can specify 5 as the
maximum value. The upper and lower bounds are implemented simply by drawing a random number
from the full distribution repeatedly until a number falling into the desired range is obtained. Therefore, if
you select an acceptable range that is unlikely, it may take Nyquist a long time to find each acceptable
random number. The intended use of the upper and lower bounds is to weed out values that are already
fairly unlikely.

(linear-dist g)
Return a FLONUM value from a linear distribution, where the probability of a value decreases
linearly from zero to g which must be greater than zero. (See Figure 7.) The linear distribution is
useful for generating for generating time and pitch intervals.

(exponential-dist delta [high])
Return a FLONUM value from an exponential distribution. The initial downward slope is steeper
with larger values of delta, which must be greater than zero. (See Figure 8. The optional high
parameter puts an artificial upper bound on the return value. The exponential distribution
generates values greater than 0, and can be used to generate time intervals. Natural random
intervals such as the time intervals between the release of atomic particles or the passing of
yellow volkswagons in traffic have exponential distributions. The exponential distribution is
memory-less: knowing that a random number from this distribution is greater than some value
(e.g. a note duration is at least 1 second) tells you nothing new about how soon the note will end.
This is a continuous distribution, but geometric-dist (described below) implements the
discrete form.

Page 106 NYQUIST MANUAL

Figure 7: The Linear Distribution, g = 1.

Figure 8: The Exponential Distribution, delta = 1.

(gamma-dist nu [high])
Return a FLONUM value from a Gamma distribution. The value is greater than zero, has a mean of
nu (a FIXNUM greater than zero), and a mode (peak) of around nu - 1. The optional high
parameter puts an artificial upper bound on the return value.

(bilateral-exponential-dist xmu tau [low] [high])
Returns a FLONUM value from a bilateral exponential distribution, where xmu is the center of the
double exponential and tau controls the spread of the distribution. A larger tau gives a wider
distribution (greater variance), and tau must be greater than zero. The low and high parameters
give optional artificial bounds on the minimum and maximum output values, respectively. This
distribution is similar to the exponential, except it is centered at 0 and can output negative values
as well. Like the exponential, it can be used to generate time intervals; however, it might be
necessary to add a lower bound so as not to compute a negative time interval.

(cauchy-dist tau [low] [high])

XMUSIC AND ALGORITHMIC COMPOSITION Page 107

Figure 9: The Gamma Distribution, nu = 4.

Figure 10: The Bilateral Exponential Distribution.

Returns a FLONUM from the Cauchy distribution, a symetric distribution with a high peak at zero
and a width (variance) that increases with parameter tau, which must be greater than zero. The
low and high parameters give optional artificial bounds on the minimum and maximum output
values, respectively.

(hyperbolic-cosine-dist [low] [high])
Returns a FLONUM value from the hyperbolic cosine distribution, a symetric distribution with its
peak at zero. The low and high parameters give optional artificial bounds on the minimum and
maximum output values, respectively.

(logistic-dist alpha beta [low] [high])
Returns a FLONUM value from the logistic distribution, which is symetric about the mean. The
alpha parameter primarily affects dispersion (variance), with larger values resulting in values
closer to the mean (less variance), and the beta parameter primarily influences the mean. The low
and high parameters give optional artificial bounds on the minimum and maximum output values,

Page 108 NYQUIST MANUAL

Figure 11: The Cauchy Distribution, tau = 1.

Figure 12: The Hyperbolic Cosine Distribution.

respectively.

(arc-sine-dist)
Returns a FLONUM value from the arc sine distribution, which outputs values between 0 and 1. It
is symetric about the mean of 1/2, but is more likely to generate values closer to 0 and 1.

(gaussian-dist xmu sigma [low] [high])
Returns a FLONUM value from the Gaussian or Gauss-Laplace distribution, a linear function of
the normal distribution. It is symetric about the mean of xmu, with a standard deviation of sigma,
which must be greater than zero. The low and high parameters give optional artificial bounds on
the minimum and maximum output values, respectively.

(beta-dist a b)
Returns a FLONUM value from the Beta distribution. This distribution outputs values between 0
and 1, with outputs more likely to be close to 0 or 1. The parameter a controls the height
(probability) of the right side of the distribution (at 1) and b controls the height of the left side (at

XMUSIC AND ALGORITHMIC COMPOSITION Page 109

Figure 13: The Logistic Distribution, alpha = 1, beta = 2.

Figure 14: The Arc Sine Distribution.

0). The distribution is symetric about 1/2 when a = b.

(bernoulli-dist px1 [x1] [x2])
Returns either x1 (default value is 1) with probability px1 or x2 (default value is 0) with
probability 1 - px1. The value of px1 should be between 0 and 1. By convention, a result of x1 is
viewed as a success while x2 is viewed as a failure.

(binomial-dist n p
Returns a FIXNUM value from the binomial distribution, where n is the number of Bernoulli trials
run (a FIXNUM) and p is the probability of success in the Bernoulli trial (a FLONUM from 0 to 1).
The mean is the product of n and p.

(geometric-dist p
Returns a FIXNUM value from the geometric distribution, which is defined as the number of
failures before a success is achieved in a Bernoulli trial with probability of success p (a FLONUM
from 0 to 1).

Page 110 NYQUIST MANUAL

Figure 15: The Gauss-Laplace (Gaussian) Distribution, xmu = 0, sigma = 1.

Figure 16: The Beta Distribution, alpha = .5, beta = .25.

(poisson-dist delta)
Returns a FIXNUM value from the Poisson distribution with a mean of delta (a FIXNUM). The
Poisson distribution is often used to generate a sequence of time intervals, resulting in random but
often pleasing rhythms.

11.4. Score Generation and Manipulation
A common application of pattern generators is to specify parameters for notes. (It should be understood

that ‘‘notes’’ in this context means any Nyquist behavior, whether it represents a conventional note, an
abstract sound object, or even some micro-sound event that is just a low-level component of a hierarchical
sound organization. Similarly, ‘‘score’’ should be taken to mean a specification for a sequence of these
‘‘notes.’’) The score-gen macro (defined by loading xm.lsp) establishes a convention for
representing scores and for generating them using patterns.

XMUSIC AND ALGORITHMIC COMPOSITION Page 111

Figure 17: The Bernoulli Distribution, px1 = .75.

Figure 18: The Binomial Distribution, n = 5, p = .5.

The timed-seq macro, described in Section 5.4, already provides a way to represent a ‘‘score’’ as a
list of expressions. The Xmusic representation goes a bit further by specifying that all notes are specified

Page 112 NYQUIST MANUAL

Figure 19: The Geometric Distribution, p = .4.

Figure 20: The Poisson Distribution, delta = 3.

by an alternation of keywords and values, where some keywords have specific meanings and
interpretations.

XMUSIC AND ALGORITHMIC COMPOSITION Page 113

The basic idea of score-gen is you provide a template for notes in a score as a set of keywords and
values. For example,

(setf pitch-pattern (make-cycle (list c4 d4 e4 f4)))
(score-gen :dur 0.4 :name ’my-sound

:pitch (next pitch-pattern) :score-len 9)

generates a score of 9 notes as follows:
((0 0 (SCORE-BEGIN-END 0 3.6))
(0 0.4 (MY-SOUND :PITCH 60))
(0.4 0.4 (MY-SOUND :PITCH 62))
(0.8 0.4 (MY-SOUND :PITCH 64))
(1.2 0.4 (MY-SOUND :PITCH 65))
(1.6 0.4 (MY-SOUND :PITCH 60))
(2 0.4 (MY-SOUND :PITCH 62))
(2.4 0.4 (MY-SOUND :PITCH 64))
(2.8 0.4 (MY-SOUND :PITCH 65))
(3.2 0.4 (MY-SOUND :PITCH 60)))

The use of keywords like :PITCH helps to make scores readable and easy to process without specific
knowledge of about the functions called in the score. For example, one could write a transpose operation
to transform all the :pitch parameters in a score without having to know that pitch is the first parameter
of pluck and the second parameter of piano-note. Keyword parameters are also used to give
flexibility to note specification with score-gen. Since this approach requires the use of keywords, the
next section is a brief explanation of how to define functions that use keyword parameters.

11.4.1. Keyword Parameters
Keyword parameters are parameters whose presence is indicated by a special symbol, called a keyword,

followed by the actual parameter. Keyword parameters may have default values that are used if no actual
parameter is provided by the caller of the function.

To specify that a parameter is a keyword parameter, use &key to specify that the following parameters
are keyword parameters. For example, here is a function that accepts keyword parameters and invokes the
pluck function:

(defun k-pluck (&key pitch dur)
(pluck pitch dur))

Now, we can call k-pluck with keyword parameters. The keywords are simply the formal parameter
names with a prepended colon character (:pitch and :dur in this example), so a function call would
look like:

(pluck :key c3 :dur 3)

Usually, it is best to give keyword parameters useful default values. That way, if a parameter such as
:dur is missing, a reasonable default value (1) can be used automatically. If no default value is given,
the NIL will be used. It is never an error to omit a keyword parameter, but the called function can check
to see if a keyword parameter was supplied or not. Default values are specified by placing the parameter
and the default value in parentheses:

(defun k-pluck (&key (pitch 60) (dur 1))
(pluck pitch dur))

Now, we can call (k-pluck :pitch c3) with no duration, (k-pluck :dur 3) with only a
duration, or even (k-pluck) with no parameters.

There is additional syntax to specify an alternate symbol to be used as the keyword and to allow the

Page 114 NYQUIST MANUAL

called function to determine whether or not a keyword parameter was supplied, but these features are
little-used. See the XLISP manual for details.

11.4.2. Using score-gen
The score-gen macro computes a score based on keyword parameters. Some keywords have a

special meaning, while others are not interpreted but merely placed in the score. The resulting score can
be synthesized using timed-seq (see Section 5.4).

The form of a call to score-gen is simply (score-gen :k1 e1 :k2 e2 ...), where the k’s
are keywords and the e’s are expressions. A score is generated by evaluating the expressions once for
each note and constructing a list of keyword-value pairs. A number of keywords have special
interpretations. The rules for interpreting these parameters will be explained through a set of "How do I
..." questions:

How many notes will be generated? The keyword parameter :score-len specifies an upper bound
on the number of notes. The keyword :score-dur specifies an upper bound on the starting time of the
last note in the score. (To be more precise, the :score-dur bound is reached when the default starting
time of the next note is greater than or equal to the :score-dur value. This definition is necessary
because note times are not strictly increasing.) When either bound is reached, score generation ends. At
least one of these two parameters must be specified or an error is raised. These keyword parameters are
evaluated just once and are not copied into the parameter lists of generated notes.

What is the duration of generated notes? The keyword :dur defaults to 1 and specifies the nominal
duration in seconds. Since the generated note list is compatible with timed-seq, the starting time and
duration (to be precise, the stretch factor) are not passed as parameters to the notes. Instead, they control
the Nyquist environment in which the note will be evaluated.

What is the start time of a note? The default start time of the first note is zero. Given a note, the default
start time of the next note is the start time plus the inter-onset time, which is given by the :ioi
parameter. If no :ioi parameter is specified, the inter-onset time defaults to the duration, given by
:dur. In all cases, the default start time of a note can be overridden by the keyword parameter :time.

When does the score begin and end? The behavior SCORE-BEGIN-END contains the beginning and
ending of the score (these are used for score manipulations, e.g. when scores are merged, their begin
times can be aligned.) When timed-seq is used to synthesize a score, the SCORE-BEGIN-END
marker is not evaluated. The score-gen macro inserts a ‘‘note’’ of the form (0 0 (SCORE-BEGIN-
END begin-time end-time)) at the time given by the :begin keyword, with begin-time and end-time
determined by the :begin and :end keyword parameters, respectively. If the :begin keyword is not
provided, the score begins at zero. If the :end keyword is not provided, the score ends at the default start
time of what would be the next note after the last note in the score (as described in the previous
paragraph). Note: if :time is used to compute note starting times, and these times are not increasing, it is
strongly advised to use :end to specify an end time for the score, because the default end time may be
anywhere in the middle of the generated sequence.

What function is called to synthesize the note? The :name parameter names the function. Like other
parameters, the value can be any expression, including something like (next fn-name-pattern),
allowing function names to be recomputed for each note. The default value is note.

XMUSIC AND ALGORITHMIC COMPOSITION Page 115

Can I make parameters depend upon the starting time or the duration of the note? Parameter
expressions can use the variable sg:time to access the start time of the note, sg:ioi to access the
inter-onset time, and sg:dur to access the duration (stretch factor) of the note. Also, sg:count counts
how many notes have been computed so far, starting at 0. The order of computation is: sg:time first,
then sg:ioi and sg:dur, so for example, an expression to compute sg:dur can depend on sg:ioi.

Can parameters depend on each other? The keyword :pre introduces an expression that is evaluated
before each note, and :post provides an expression to be evaluated after each note. The :pre
expression can assign one or more global variables which are then used in one or more expressions for
parameters.

How do I debug score-gen expressions? You can set the :trace parameter to true (t) to enable a
print statement for each generated note.

How can I save scores generated by score-gen that I like? If the keyword parameter :save is set to
a symbol, the global variable named by the symbol is set to the value of the generated sequence. Of
course, the value returned by score-gen is just an ordinary list that can be saved like any other value.

In summary, the following keywords have special interpretations in score-gen: :begin, :end,
:time, :dur, :name, :ioi, :trace, :save, :score-len, :score-dur, :pre, :post. All
other keyword parameters are expressions that are evaluated once for each note and become the
parameters of the notes.

11.4.3. Score Manipulation
Nyquist encourages the representation of music as executable programs, or behaviors, and there are

various ways to modify behaviors, including time stretching, transposition, etc. An alternative to
composing executable programs is to manipulate scores as editable data. Each approach has its strengths
and weaknesses. This section describes functions intended to manipulate Xmusic scores as generated by,
or at least in the form generated by, score-gen. Recall that this means scores are lists of events (e.g.
notes), where events are three-element lists of the form (time duration expression, and where expression
is a standard lisp function call where all parameters are keyword parameters. In addition, the first ‘‘note’’
may be the special SCORE-BEGIN-END expression. If this is missing, the score begins at zero and ends
at the end of the last note.

For convenience, a set of functions is offered to access properties of events (or notes) in scores.
Although lisp functions such as car, cadr, and caddr can be used, code is more readable when more
mnemonic functions are used to access events.

(event-time event)
Retrieve the time field from an event.

(event-set-time event time)
Construct a new event where the time of event is replaced by time.

(event-dur event)
Retrieve the duration (i.e. the stretch factor) field from an event.

(event-set-dur event dur)
Construct a new event where the duration (or stretch factor) of event is replaced by dur.

(event-expression event)
Retrieve the expression field from an event.

Page 116 NYQUIST MANUAL

(event-set-expression event dur)
Construct a new event where the expression of event is replaced by expression.

(event-end event)
Retrieve the end time of event, its time plus its duration.

(expr-has-attr expression attribute)
Test whether a score event expression has the given attribute.

(expr-get-attr expression attribute [default])
Get the value of the given attribute from a score event expression. If attribute is not present,
return default if specified, and otherwise nil.

(expr-set-attr expr attribute value)
Construct a new expression identical to expr except that the attribute has value.

(event-has-attr event attribute)
Test whether a given score event’s expression has the given attribute.

(event-get-attr event attribute [default])
Get the value of the given attribute from a score event’s expression. If attribute is not present,
return default if specified, and otherwise nil.

(event-set-attr event attribute value)
Construct a new event identical to event except that the attribute has value.

Functions are provided to shift the starting times of notes, stretch times and durations, stretch only
durations, add an offset to a keyword parameter, scale a keyword parameter, and other manipulations.
Functions are also provided to extract ranges of notes, notes that match criteria, and to combine scores.
Most of these functions (listed below in detail) share a set of keyword parameters that optionally limit the
range over which the transformation operates. The :from-index and :to-index parameters specify
the index of the first note and the index of the last note to be changed. If these numbers are negative, they
are offsets from the end of the score, e.g. -1 denotes the last note of the score. The :from-time and
:to-time indicate a range of starting times of notes that will be affected by the manipulation. Only
notes whose time is greater than or equal to the from-time and strictly less than the to-time are modified.
If both index and time ranges are specified, only notes that satisfy both constraints are selected.

(score-sorted score)
Test if score is sorted.

(score-sort score [copy-flag])
Sort the notes in a score into start-time order. If copy-flag is nil, this is a destructive operation
which should only be performed if the top-level score list is a fresh copy that is not shared by any
other variables. (The copy-flag is intended for internal system use only.) For the following
operations, it is assumed that scores are sorted, and all operations return a sorted score.

(score-shift score offset [:from-index i] [:to-index j] [:from-time x] [:to-
time y])
Add a constant offset to the starting time of a set of notes in score. By default, all notes are
modified, but the range of notes can be limited with the keyword parameters. The begin time of
the score is not changed, but the end time is increased by offset. The original score is not
modified, and a new score is returned.

(score-stretch score factor [:dur dur-flag] [:time time-flag] [:from-index i]
[:to-index j] [:from-time x] [:to-time y])
Stretch note times and durations by factor. The default dur-flag is non-null, but if dur-flag is null,
the original durations are retained and only times are stretched. Similarly, the default time-flag is
non-null, but if time-flag is null, the original times are retained and only durations are stretched. If
both dur-flag and time-flag are null, the score is not changed. If a range of notes is specified,
times are scaled within that range, and notes after the range are shifted so that the stretched region

XMUSIC AND ALGORITHMIC COMPOSITION Page 117

does not create a "hole" or overlap with notes that follow. If the range begins or ends with a time
(via :from-time and :to-time), time stretching takes place over the indicated time interval
independent of whether any notes are present or where they start. In other words, the ‘‘rests’’ are
stretched along with the notes. The original score is not modified, and a new score is returned.

(score-transpose score keyword amount [:from-index i] [:to-index j] [:from-
time x] [:to-time y])
For each note in the score and in any indicated range, if there is a keyword parameter matching
keyword and the parameter value is a number, increment the parameter value by amount. For
example, to tranpose up by a whole step, write (score-transpose 2 :pitch score).
The original score is not modified, and a new score is returned.

(score-scale score keyword amount [:from-index i] [:to-index j] [:from-time
x] [:to-time y])
For each note in the score and in any indicated range, if there is a keyword parameter matching
keyword and the parameter value is a number, multiply the parameter value by amount. The
original score is not modified, and a new score is returned.

(score-sustain score factor [:from-index i] [:to-index j] [:from-time x]
[:to-time y])
For each note in the score and in any indicated range, multiply the duration (stretch factor) by
amount. This can be used to make notes sound more legato or staccato, and does not change their
starting times. The original score is not modified, and a new score is returned.

(score-voice score replacement-list [:from-index i] [:to-index j] [:from-time
x] [:to-time y])
For each note in the score and in any indicated range, replace the behavior (function) name using
replacement-list, which has the format: ((old1 new1) (old2 new2) ...), where oldi
indicates a current behavior name and newi is the replacement. If oldi is *, it matches anything.
For example, to replace my-note-1 by trombone and my-note-2 by horn, use
(score-voice score ’((my-note-1 trombone) (my-note-2 horn))). To
replace all instruments with piano, use (score-voice score ’((* piano))). The
original score is not modified, and a new score is returned.

(score-merge score1 score2 ...)
Create a new score containing all the notes of the parameters, which are all scores. The resulting
notes retain their original times and durations. The merged score begin time is the minimum of
the begin times of the parameters and the merged score end time is the maximum of the end times
of the parameters. The original scores are not modified, and a new score is returned.

(score-append score1 score2 ...)
Create a new score containing all the notes of the parameters, which are all scores. The begin
time of the first score is unaltered. The begin time of each other score is aligned to the end time of
the previous score; thus, scores are ‘‘spliced’’ in sequence. The original scores are not modified,
and a new score is returned.

(score-select score predicate [:from-index i] [:to-index j] [:from-time x]
[:to-time y] [:reject flag])
Select (or reject) notes to form a new score. Notes are selected if they fall into the given ranges of
index and time and they satisfy predicate, a function of three parameters that is applied to the
start time, duration, and the expression of the note. Alternatively, predicate may be t, indicating
that all notes in range are to be selected. The selected notes along with the existing score begin
and end markers, are combined to form a new score. Alternatively, if the :reject parameter is
non-null, the notes not selected form the new score (in other words the selected notes are rejected
or removed to form the new score). The original score is not modified, and a new score is
returned.

(score-set-begin score time)
The begin time from the score’s SCORE-BEGIN-END marker is set to time. The original score is

Page 118 NYQUIST MANUAL

not modified, and a new score is returned.

(score-get-begin score)
Return the begin time of the score.

(score-set-end score time)
The end time from the score’s SCORE-BEGIN-END marker is set to time. The original score is
not modified, and a new score is returned.

(score-get-end score)
Return the end time of the score.

(score-must-have-begin-end score)
If score does not have a begin and end time, construct a score with a SCORE-BEGIN-END
expression and return it. If score already has a begin and end time, just return the score. The
orignal score is not modified.

(score-filter-length score cutoff)
Remove notes that extend beyond the cutoff time. This is similar to score-select, but the
here, events are removed when their nominal ending time (start time plus duration) exceeds the
cutoff, whereas the :to-time parameter is compared to the note’s start time. The original score
is not modified, and a new score is returned.

(score-repeat score n)
Make a sequence of n copies of score. Each copy is shifted to that it’s begin time aligns with the
end time of the previous copy, as in score-append. The original score is not modified, and a
new score is returned.

(score-stretch-to-length score length)
Stretch the score so that the end time of the score is the score’s begin time plus length. The
original score is not modified, and a new score is returned.

(score-filter-overlap score)
Remove overlapping notes (based on the note start time and duration), giving priority to the
positional order within the note list (which is also time order). The original score is not modified,
and a new score is returned.

(score-print score)
Print a score with one note per line. Returns nil.

(score-play score)
Play score using timed-seq to convert the score to a sound, and play to play the sound.

(score-adjacent-events score function [:from-index i] [:to-index j] [:from-
time x] [:to-time y])
Call (function A B C), where A, B, and C are consecutive notes in the score. The result
replaces B. If the result is nil, B is deleted, and the next call will be (function A C D), etc. The
first call is to (function nil A B) and the last is to (function Y Z nil). If there is just one
note in the score, (function nil A nil) is called. Function calls are not made if the note is
outside of the indicated range. This function allows notes and their parameters to be adjusted
according to their immediate context. The original score is not modified, and a new score is
returned.

(score-apply score function [:from-index i] [:to-index j] [:from-time x]
[:to-time y])
Replace each note in the score with the result of (function time dur expression), where time, dur,
and expression are the time, duration, and expression of the note. If a range is indicated, only
notes in the range are replaced. The original score is not modified, and a new score is returned.

(score-indexof score function [:from-index i] [:to-index j] [:from-time x]
[:to-time y])
Return the index (position) of the first score event (in range) for which applying function using

XMUSIC AND ALGORITHMIC COMPOSITION Page 119

(function time dur expression) returns true.

(score-last-indexof score function [:from-index i] [:to-index j] [:from-
time x] [:to-time y])
Return the index (position) of the last score event (in range) for which applying function using
(function time dur expression) returns true.

(score-randomize-start score amt [:from-index i] [:to-index j] [:from-
time x] [:to-time y])
Alter the start times of notes by a random amount up to plus or minus amt. The original score is
not modified, and a new score is returned.

11.4.4. Xmusic and Standard MIDI Files
Nyquist has a general facility to read and write MIDI files. You can even translate to and from a text

representation, as described in Chapter 8. It is also useful sometimes to read notes from Standard MIDI
Files into Xmusic scores and vice versa. At present, Xmusic only translates notes, ignoring the various
controls, program changes, pitch bends, and other messages.

MIDI notes are translated to Xmusic score events as follows:

(time dur (NOTE :chan channel
:pitch keynum :vel velocity)),

where channel, keynum, and velocity come directly from the MIDI message (channels are numbered
starting from zero). Note also that note-off messages are implied by the stretch factor dur which is
duration in seconds.

(score-read-smf filename)
Read a standard MIDI file from filename. Return an Xmusic score, or nil if the file could not be
opened. The start time is zero, and the end time is the maximum end time of all notes. A very
limited interface is offered to extract MIDI program numbers from the file: The global variable
rslt is set to a list of MIDI program numbers for each channel. E.g. if *rslt* is (0 20
77), then program for channel 0 is 0, for channel 1 is 20, and for channel 2 is 77. Program
changes were not found on other channels. The default program number is 0, so in this example,
it is not known whether the program 0 on channel 0 is the result of a real MIDI program change
command or just a default value. If more than one program change exists on a channel, the last
program number is recorded and returned, so this information will only be completely correct
when the MIDI file sends single program change per channel before any notes are played. This,
however, is a fairly common practice. Note that the list returned as *rslt* can be passed to
score-write-smf, described below.

(score-write-smf score filename [programs])
Write a standard MIDI file to filename with notes in score. In this function, every event in the
score with a :pitch attribute, regardless of the ‘‘instrument’’ (or function name), generates a
MIDI note, using the :chan attribute for the channel (default 0) and the :vel attribute for
velocity (default 100). There is no facility (in the current implementation) to issue control
changes, but to allow different instruments, MIDI programs may be set in two ways. The simplest
is to associate programs with channels using the optional programs parameter, which is simply a
list of up to 16 MIDI program numbers. Corresponding program change commands are added to
the beginning of the MIDI file. If programs has less than 16 elements, program change
commands are only sent on the first n channels. The second way to issue MIDI program changes
is to add a :program keyword parameter to a note in the score. Typically, the note will have a
:pitch of nil so that no actual MIDI note-on message is generated. If program changes and
notes have the same starting times, their relative playback order is undefined, and the note may be
cut off by an immediately following program change. Therefore, program changes should occur

Page 120 NYQUIST MANUAL

slightly, e.g. 1 ms, before any notes. Program numbers and channels are numbered starting at
zero, matching the internal MIDI representation. This may be one less than displayed on MIDI
hardware, sequencers, etc.

11.4.5. Workspaces
When working with scores, you may find it necessary to save them in files between work sessions. This

is not an issue with functions because they are normally edited in files and loaded from them. In contrast,
scores are created as Lisp data, and unless you take care to save them, they will be destroyed when you
exit the Nyquist program.

A simple mechanism called a workspace has been created to manage scores (and any other Lisp data,
for that matter). A workspace is just a set of lisp global variables. These variables are stored in the file
workspace.lsp. For simplicity, there is only one workspace, and no backups or versions are
maintained, but the user is free to make backups and copies of workspace.lsp. To help remember
what each variable is for, you can also associate and retrieve a text string with each variable. The
following functions manage workspaces.

In addition, when a workspace is loaded, you can request that functions be called. For example, the
workspace might store descriptions of a graphical interface. When the workspace is loaded, a function
might run to convert saved data into a graphical interface. (This is how sliders are saved by the IDE.)

(add-to-workspace symbol)
Adds a global variable to the workspace. The symbol should be a (quoted) symbol.

(save-workspace)
All global variables in the workspace are saved to workspace.lsp (in the current directory),
overwriting the previous file.

(describe symbol [description])
If description, a text string, is present, associate description with the variable named by the
symbol. If symbol is not already in the workspace, it is added. If description is omitted, the
function returns the current description (from a previous call) for symbol.

(add-action-to-workspacesymbol)
Requests that the function named by symbol be called when the workspace is loaded (if the
function is defined).

To restore a workspace, use (load "workspace"). This restores the values of the workspace
variables to the values they had when save-workspace was last called. It also restores the
documentation strings, if set, by describe. If you load two or more workspace.lsp files, the
variables will be merged into a single workspace. The current set of workspace variables are saved in the
list *workspace*. To clear the workspace, set *workspace* to nil. This does not delete any
variables, but means that no variables will be saved by save-workspace until variables are added
again.

Functions to be called are saved in the list *workspace-actions*. to clear the functions, set
workspace-actions to nil. Restore functions to the list with
add-action-to-workspace.

XMUSIC AND ALGORITHMIC COMPOSITION Page 121

11.4.6. Utility Functions
This chapter concludes with details of various utility functions for score manipulation.

(patternp expression)
Test if expression is an Xmusic pattern.

(params-transpose params keyword amount)
Add a transposition amount to a score event parameter. The params parameter is a list of
keyword/value pairs (not preceded by a function name). The keyword is the keyword of the value
to be altered, and amount is a number to be added to the value. If no matching keyword is present
in params, then params is returned. Otherwise, a new parameter list is constructed and returned.
The original params is not changed.

(params-scale params keyword amount)
Scale a score event parameter by some factor. This is like params-transpose, only using
multiplication. The params list is a list of keyword/value pairs, keyword is the parameter
keyword, and amount is the scale factor.

(interpolate x x1 y1 x2 y2)
Linearly interpolate (or extrapolate) between points (x1, y1) and (x2, y2) to compute the y value
corresponding to x.

(intersection a b)
Compute the set intersection of lists a and b.

(union a b)
Compute the set union of lists a and b.

(set-difference a b)
Compute the set of all elements that are in a but not in b.

(subsetp a b)\
Returns true iff a is a subset of b, that is, each element of a is a member of b.

Page 122 NYQUIST MANUAL

NYQUIST LIBRARIES Page 123

12. Nyquist Libraries
Nyquist is always growing with new functions. Functions that are most fundamental are added to the

core language. These functions are automatically loaded when you start Nyquist, and they are
documented in the preceding chapters. Other functions seem less central and are implemented as lisp files
that you can load. These are called library functions, and they are described here.

To use a library function, you must first load the library, e.g. (load "pianosyn") loads the piano
synthesis library. The libraries are all located in the lib directory, and you should therefore include this
directory on your XLISPPATH variable. (See Section 1.) Each library is documented in one of the
following sections. When you load the library described by the section, all functions documented in that
section become available.

12.1. Piano Synthesizer
The piano synthesizer (library name is pianosyn.lsp) generates realistic piano tones using a

multiple wavetable implementation by Zheng (Geoffrey) Hua and Jim Beauchamp, University of Illinois.
Please see the notice about acknowledgements that prints when you load the file. Further informations
and example code can be found in demos/piano.htm. There are several useful functions in this
library:

(piano-note duration step dynamic)
Synthesizes a piano tone. Duration is the duration to the point of key release, after which there is
a rapid decay. Step is the pitch in half steps, and dynamic is approximately equivalent to a MIDI
key velocity parameter. Use a value near 100 for a loud sound and near 10 for a soft sound.

(piano-note-2 step dynamic)
Similar to piano-note except the duration is nominally 1.0.

(piano-midi midi-file-name)
Use the piano synthesizer to play a MIDI file. The file name (a string) is given by midi-file-name.

(piano-midi2file midi-file-name sound-file-name)
Use the piano synthesizer to play a MIDI file. The MIDI file is given by midi-file-name and the
(monophonic) result is written to the file named sound-file-name.

12.2. Dymanics Compression
To use these functions, load the file compress.lsp. This library implements a compressor originally

intended for noisy speech audio, but usable in a variety of situations. There are actually two compressors
that can be used in series. The first, compress, is a fairly standard one: it detects signal level with an
RMS detector and uses table-lookup to determine how much gain to place on the original signal at that
point. One bit of cleverness here is that the RMS envelope is ‘‘followed’’ or enveloped using
snd-follow, which does look-ahead to anticipate peaks before they happen.

The other interesting feature is compress-map, which builds a map in terms of compression and
expansion. For speech, the recommended procedure is to figure out the noise floor on the signal you are
compressing (for example, look at the signal where the speaker is not talking). Use a compression map
that leaves the noise alone and boosts signals that are well above the noise floor. Alas, the
compress-map function is not written in these terms, so some head-scratching is involved, but the
results are quite good.

The second compressor is called agc, and it implements automatic gain control that keeps peaks at or

Page 124 NYQUIST MANUAL

below 1.0. By combining compress and agc, you can process poorly recorded speech for playback on
low-quality speakers in noisy environments. The compress function modulates the short-term gain to to
minimize the total dynamic range, keeping the speech at a generally loud level, and the agc function
rides the long-term gain to set the overall level without clipping.

(compress-map compress-ratio compress-threshold expand-ratio expand-ratio [limit: limit]
[transition: transition])
Construct a map for the compress function. The map consists of two parts: a compression part
and an expansion part. The intended use is to compress everything above compress-threshold by
compress-ratio, and to downward expand everything below expand-ratio by expand-ratio.
Thresholds are in dB and ratios are dB-per-dB. 0dB corresponds to a peak amplitude of 1.0 or
rms amplitude of 0.7 If the input goes above 0dB, the output can optionally be limited by setting
:limit (a keyword parameter) to T. This effectively changes the compression ratio to infinity
at 0dB. If :limit is nil (the default), then the compression-ratio continues to apply above
0dB.

Another keyword parameter, :transition, sets the amount below the thresholds (in dB) that a smooth
transition starts. The default is 0, meaning that there is no smooth transition. The smooth
transition is a 2nd-order polynomial that matches the slopes of the straight-line compression
curve and interpolates between them.

It is assumed that expand-threshold <= compress-threshold <= 0 The gain is unity at 0dB so if
compression-ratio > 1, then gain will be greater than unity below 0dB.

The result returned by this function is a sound for use in the shape function. The sound maps input dB to
gain. Time 1.0 corresponds to 0dB, time 0.0 corresponds to -100 dB, and time 2.0 corresponds to
+100dB, so this is a 100hz ‘‘sample rate’’ sound. The sound gives gain in dB.

(db-average input)
Compute the average amplitude of input in dB.

(compress input map rise-time fall-time [lookahead])
Compress input using map, a compression curve probably generated by compress-map (see
above). Adjustments in gain have the given rise-time and fall-time. Lookahead tells how far ahead
to look at the signal, and is rise-time by default.

(agc input range rise-time fall-time [lookahead])
An automatic gain control applied to input. The maximum gain in dB is range. Peaks are
attenuated to 1.0, and gain is controlled with the given rise-time and fall-time. The look-ahead
time default is rise-time.

12.3. Clipping Softener
This library, in soften.lsp, was written to improve the quality of poorly recorded speech. In

recordings of speech, extreme clipping generates harsh high frequency noise. This can sound particulary
bad on small speakers that will emphasize high frequencies. This problem can be ameliorated by low-pass
filtering regions where clipping occurs. The effect is to dull the harsh clipping. Intelligibility is not
affected by much, and the result can be much more pleasant on the ears. Clipping is detected simply by
looking for large signal values. Assuming 8-bit recording, this level is set to 126/127.

The function works by cross-fading between the normal signal and a filtered signal as opposed to
changing filter coefficients.

(soften-clipping snd cutoff)
Filter the loud regions of a signal where clipping is likely to have generated additional high
frequencies. The input signal is snd and cutoff is the filter cutoff frequency (4 kHz is
recommended for speech).

NYQUIST LIBRARIES Page 125

12.4. Graphical Equalizer
There’s nothing really ‘‘graphical’’ about this library (grapheq.lsp), but this is a common term for

multi-band equalizers. This implementation uses Nyquist’s eq-band function to split the incoming
signal into different frequency bands. Bands are spaced geometrically, e.g. each band could be one
octave, meaning that each successive band has twice the bandwidth. An interesting possibility is using
computed control functions to make the equalization change over time.

(nband-rangeinput gains lowf highf)
A graphical equalizer applied to input (a SOUND). The gain controls and number of bands is
given by gains, an ARRAY of SOUNDs (in other words, a Nyquist multichannel SOUND). The
bands are geometrically equally spaced from the lowest frequency lowf to the highest frequency
highf (both are FLONUMs).

(nband input gains)
A graphical equalizer, identical to nband-range with a range of 20 to 20,000 Hz.

12.5. Sound Reversal
The reverse.lsp library implements functions to play sounds in reverse.

(s-reverse snd)
Reverses snd (a SOUND). Sound must be shorter than *max-reverse-samples*, which is
currently initialized to 25 million samples. Reversal allocates about 4 bytes per sample. This
function uses XLISP in the inner sample loop, so do not be surprised if it calls the garbage
collector a lot and runs slowly. The result starts at the starting time given by the current
environment (not necessarily the starting time of snd). If snd has multiple channels, a multiple
channel, reversed sound is returned.

s-read-reverse filename [:time-offset offset] [:srate sr] [:dur dur]
[:nchans chans] [:format format] [:mode mode] [:bits n] [:swap flag]}
This function is identical to s-read (see 5.5), except it reads the indicated samples in reverse.
Like s-reverse (see above), it uses XLISP in the inner loop, so it is slow. Unlike
s-reverse, s-read-reverse uses a fixed amount of memory that is independent of how
many samples are computed. Multiple channels are handled.

12.6. Time Delay Functions
The time-delay-fns.lsp library implements chorus, phaser, and flange effects.

(phaser snd)
A phaser effect applied to snd (a SOUND). There are no parameters, but feel free to modify the
source code of this one-liner.

(flange snd)
A flange effect applied to snd. To vary the rate and other parameters, see the source code.

(stereo-chorussnd)
A chorus effect applied to snd, a SOUND (monophonic). The output is a stereo sound. All
parameters are built-in, but see the simple source code to make modifications.

(chorus snd maxdepth depth rate saturation)
A chorus effect applied to snd. All parameters may be arrays as usual. The maxdepth is a
FLONUM giving twice the maximum value of depth, which may be a FLONUM or a SOUND.
The chorus is implemented as a variable delay modulated by a sinusoid running at rate Hz (a
FLONUM). The sinusoid is scaled by depth and offset by maxdepth/2. The delayed signal is
mixed with the original, and saturation gives the fraction of the delayed signal (from 0 to 1) in

Page 126 NYQUIST MANUAL

the mix. A reasonable choice of parameter values is maxdepth = 0.05, depth = 0.025, rate = 0.5,
and saturation = 0.5.

12.7. Multiple Band Effects
The bandfx.lsp library implements several effects based on multiple frequency bands. The idea is

to separate a signal into different frequency bands, apply a slightly different effect to each band, and sum
the effected bands back together to form the result. This file includes its own set of examples. After
loading the file, try (f2), (f3), (f4), and (f5) to hear them.

There is much room for expansion and experimentation with this library. Other effects might include
distortion in certain bands (for example, there are commercial effects that add distortion to low
frequencies to enhance the sound of the bass), separating bands into different channels for stereo or
multi-channel effects, adding frequency-dependent reverb, and performing dynamic compression,
limiting, or noise gate functions on each band. There are also opportunities for cross-synthesis: using the
content of bands extracted from one signal to modify the bands of another. The simplest of these would
be to apply amplitude envelopes of one sound to another. Please contact us (dannenberg@cs.cmu.edu) if
you are interested in working on this library.

(apply-banded-delay s lowp highp num-bands lowd highd fb wet)
Separates input SOUND s into FIXNUM num-bands bands from a low frequency of lowp to a high
frequency of highp (these are FLONUMS that specify steps, not Hz), and applies a delay to each
band. The delay for the lowest band is given by the FLONUM lowd (in seconds) and the delay for
the highest band is given by the FLONUM highd. The delays for other bands are linearly
interpolated between these values. Each delay has feedback gain controlled by FLONUM fb. The
delayed bands are scaled by FLONUM wet, and the original sound is scaled by 1 - wet. All are
summed to form the result, a SOUND.

(apply-banded-bass-boosts lowp highp num-bands num-boost gain)
Applies a boost to low frequencies. Separates input SOUND s into FIXNUM num-bands bands
from a low frequency of lowp to a high frequency of highp (these are FLONUMS that specify
steps, not Hz), and scales the lowest num-boost (a FIXNUM) bands by gain, a FLONUM. The
bands are summed to form the result, a SOUND.

(apply-banded-treble-boosts lowp highp num-bands num-boost gain)
Applies a boost to high frequencies. Separates input SOUND s into FIXNUM num-bands bands
from a low frequency of lowp to a high frequency of highp (these are FLONUMS that specify
steps, not Hz), and scales the highest num-boost (a FIXNUM) bands by gain, a FLONUM. The
bands are summed to form the result, a SOUND.

12.8. Granular Synthesis
Some granular synthesis functions are implemented in the gran.lsp library file. There are many

variations and control schemes one could adopt for granular synthesis, so it is impossible to create a
single universal granular synthesis function. One of the advantages of Nyquist is the integration of control
and synthesis functions, and users are encouraged to build their own granular synthesis functions
incorporating their own control schemes. The gran.lsp file includes many comments and is intended
to be a useful starting point.

(sf-granulate sf-granulate filename grain-dur grain-dev ioi ioi-dev pitch-dev [file-start]
[file-end])
Granular synthesis using a sound file named filename as the source for grains. Each grain
duration is the sum of grain-dur and a random number from 0 to grain-dev. The inter-onset

NYQUIST LIBRARIES Page 127

interval between successive grains (which may overlap) is the sum of ioi and a random number
from 0 to ioi-dev. Grains are resampled at a rate between 1 and pitch-dev. The duration of the
result sound is determined by the stretch factor (not by the sound file), and grains are selected
from the file by more-or-less stepping through the file uniformly (the step size depends on the
total number of grains needed for the output.) The optional parameters give a starting point and
ending point (in seconds) from which to take samples from the file. To achieve a rich granular
synthesis effect, it is often a good idea to sum four or more copies of sf-granulate together.
(See the gran-test function in gran.lsp.)

12.9. MIDI Utilities
The midishow.lsp library has functions that can print the contents fo MIDI files. This intended as a

debugging aid.

(midi-show-file file-name)
Print the contents of a MIDI file to the console.

(midi-show the-seq [out-file])
Print the contents of the sequence the-seq to the file out-file (whose default value is the console.)

12.10. Reverberation
The reverb.lsp library implements artificial reverberation.

(reverb snd time)
Artificial reverberation applied to snd with a decay time of time.

12.11. DTMF Encoding
The dtmf.lsp library implements DTMF encoding. DTMF is the ‘‘touch tone’’ code used by

telephones.

(dtmf-tone key len space)
Generate a single DTMF tone. The key parameter is either a digit (a FIXNUM from 0 through 9)
or the atom STAR or POUND. The duration of the done is given by len (a FLONUM) and the tone
is followed by silence of duration space (a FLONUM).

(speed-dial thelist)
Generates a sequence of DTMF tones using the keys in thelist (a LIST of keys as described
above under dtmf-tone). The duration of each tone is 0.2 seconds, and the space between
tones is 0.1 second. Use stretch to change the ‘‘dialing’’ speed.

12.12. Dolby Surround(R), Stereo and Spatialization Effects
The spatial.lsp library implements various functions for stereo manipulation and spatialization. It

also includes some functions for Dolby Pro-Logic panning, which encodes left, right, center, and surround
channels into stereo. The stereo signal can then be played through a Dolby decoder to drive a surround
speaker array. This library has a somewhat simplified encoder, so you should certainly test the output.
Consider using a high-end encoder for critical work. There are a number of functions in spatial.lsp
for testing. See the source code for comments about these.

(stereoizesnd)
Convert a mono sound, snd, to stereo. Four bands of equalization and some delay are used to
create a stereo effect.

Page 128 NYQUIST MANUAL

(widen snd amt)
Artificially widen the stereo field in snd, a two-channel sound. The amount of widening is amt,
which varies from 0 (snd is unchanged) to 1 (maximum widening). The amt can be a SOUND or a
number.

(spansnd amt)
Pan the virtual center channel of a stereo sound, snd, by amt, where 0 pans all the way to the left,
while 1 pans all the way to the right. The amt can be a SOUND or a number.

(swapchannelssnd)
Swap left and right channels in snd, a stereo sound.

(prologic l c r s)
Encode four monaural SOUNDs representing the front-left, front-center, front-right, and rear
channels, respectively. The return value is a stereo sound, which is a Dolby-encoded mix of the
four input sounds.

(pl-left snd)
Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the front left channel.

(pl-center snd)
Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the front center channel.

(pl-right snd)
Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the front right channel.

(pl-rear snd)
Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the rear, or surround,
channel.

(pl-pan2d snd x y)
Comparable to Nyquist’s existing pan function, pl-pan2d provides not only left-to-right
panning, but front-to-back panning as well. The function accepts three parameters: snd is the
(monophonic) input SOUND, x is a left-to-right position, and y is a front-to-back position. Both
position parameters may be numbers or SOUNDs. An x value of 0 means left, and 1 means right.
Intermediate values map linearly between these extremes. Similarly, a y value of 0 causes the
sound to play entirely through the front speakers(s), while 1 causes it to play entirely through the
rear. Intermediate values map linearly. Note that, although there are usually two rear speakers in
Pro-Logic systems, they are both driven by the same signal. Therefore any sound that is panned
totally to the rear will be played over both rear speakers. For example, it is not possible to play a
sound exclusively through the rear left speaker.

(pl-position snd x y config)
The position function builds upon speaker panning to allow more abstract placement of sounds.
Like pl-pan2d, it accepts a (monaural) input sound as well as left-to-right (x) and front-to-back
(y) coordinates, which may be FLONUMs or SOUNDs. A fourth parameter config specifies the
distance from listeners to the speakers (in meters). Current settings assume this to be constant for
all speakers, but this assumption can be changed easily (see comments in the code for more
detail). There are several important differences between pl-position and pl-pan2d. First,
pl-position uses a Cartesian coordinate system that allows x and y coordinates outside of the
range (0, 1). This model assumes a listener position of (0,0). Each speaker has a predefined
position as well. The input sound’s position, relative to the listener, is given by the vector (x,y).

(pl-doppler snd r)
Pitch-shift moving sounds according to the equation: fr = f0((c+vr)/c), where fr is the output
frequency, f0 is the emitted (source) frequency, c is the speed of sound (assumed to be 344.31
m/s), and vr is the speed at which the emitter approaches the receiver. (vr is the first derivative of
parameter r, the distance from the listener in meters.

NYQUIST LIBRARIES Page 129

12.13. Minimoog-inspired Synthesis
The moog.lsp library gives the Nyquist user easy access to ‘‘classic’’ synthesizer sounds through an

emulation of the Minimoog Synthesizer. Unlike modular Moogs that were very large, the Minimoog was
the first successful and commonly used portable synthesizer. The trademark filter attack was unique and
easily recognizable. The goal of this Nyquist instrument is not only to provide the user with default
sounds, but also to give control over many of the ‘‘knobs’’ found on the Minimoog. In this
implementation, these parameters are controlled using keywords. The input to the moog instrument is a
user-defined sequence of notes, durations, and articulations that simulate notes played on a keyboard.
These are translated into control voltages that drive multiple oscillators, similar to the Voltage Controlled
Oscillator or VCO found in the original analog Moog.

The basic functionality of the Minimoog has been implemented, including the often-used "glide". The
glide feature essentially low-pass filters the control voltage sequence in order to create sweeps between
notes. Figure 21 is a simplified schematic of the data flow in the Moog. The control lines have been
omitted.

Figure 21: System diagram for Minimoog emulator.

The most recognizable feature of the Minimoog is its resonant filter, a Four-Pole Ladder Filter invented
by Robert Moog. It is simply implemented in a circuit with four transistors and provides an outstanding
24 dB/octave rolloff. It is modeled here using the built-in Nyquist resonant filter. One of the Moog filter
features is a constant Q, or center frequency to bandwidth ratio. This is implemented and the user can
control the Q.

The user can control many parameters using keywords. Their default values, acceptable ranges, and
descriptions are shown below. The defaults were obtained by experimenting with the official Minimoog
software synthesizer by Arturia.

Page 130 NYQUIST MANUAL

12.13.1. Oscillator Parameters
range-osc1 (2)

range-osc2 (1)
range-osc3 (3)
These parameters control the octave of each oscillator. A value of 1 corresponds to the octave indicated
by the input note. A value of 3 is two octaves above the fundamental. The allowable range is 1 to 7.

detun2 (-.035861)
detun3 (.0768)
Detuning of two oscillators adds depth to the sound. A value of 1 corresponds to an increase of a single
semitone and a -1 corresponds to a decrease in a semitone. The range is -1 to 1.

shape-osc1 (*saw-table*)
shape-osc2 (*saw-table*)
shape-osc3 (*saw-table*)
Oscilators can use any wave shape. The default sawtooth waveform is a built-in Nyquist variable. Other
waveforms can be defined by the user.

volume-osc1 (1)
volume-osc2 (1)
volume-osc3 (1)
These parameters control the relative volume of each oscillator. The range is any FLONUM greater than or
equal to zero.

12.13.2. Noise Parameters
noiselevel (.05)

This parameter controls the relative volume of the noise source. The range is any FLONUM greater than or
equal to zero.

12.13.3. Filter Parameters
filter-cutoff (768)

The cutoff frequency of the filter in given in Hz. The range is zero to 20,000 Hz.

Q (2)
Q is the ratio of center frequency to bandwidth. It is held constant by making the bandwidth a function of
frequency. The range is any FLONUM greater than zero.

contour (.65)
Contour controls the range of the transient frequency sweep from a high to low cutoff frequency when a
note is played. The high frequency is proportional to contour. A contour of 0 removes this sweep. The
range is 0 to 1.

filter-attack (.0001)
Filter attack controls the attack time of the filter, i.e. the time to reach the high cutoff frequency. The
range is any FLONUM greater than zero (seconds).

filter-decay (.5)

NYQUIST LIBRARIES Page 131

Filter decay controls the decay time of the filter, i.e. the time of the sweep from the high to low cutoff
frequency. The range is any FLONUM greater than zero (seconds).

filter-sustain (.8)
Filter sustain controls the percentage of the filter cutoff frequency that the filter settles on following the
sweep. The range is 0 to 1.

12.13.4. Amplitude Parameters
amp-attack (.01)

This parameter controls the amplitude envelope attack time, i.e. the time to reach maximum amplitude.
The range is any FLONUM greater than zero (seconds).

amp-decay (1)
This parameter controls the amplitude envelope decay time, i.e. the time between the maximum and
sustain volumes. The range is any FLONUM greater than zero (seconds).

amp-sustain (1)
This parameter controls the amplitude envelope sustain volume, a fraction of the maximum. The range is
0 to 1.

amp-release (0)
This parameter controls the amplitude envelope release time, i.e. the time it takes between the sustain
volume and 0 once the note ends. The duration controls the overall length of the sound. The range of
amp-release is any FLONUM greater than zero (seconds).

12.13.5. Other Parameters
glide (0)

Glide controls the low-pass filter on the control voltages. This models the glide knob on a Minimoog. A
higher value corresponds to a lower cutoff frequency and hence a longer "glide" between notes. A value
of 0 corresponds to no glide. The range is zero to 10.

12.13.6. Input Format
A single note or a series of notes can be input to the Moog instrument by defining a list with the

following format:

(list (list frequency duration articulation) ...)

where frequency is a FLONUM in steps, duration is the duration of each note in seconds (regardless of the
release time of the amplifier), and articulation is a percentage of the duration that a sound will be played,
representing the amount of time that a key is pressed. The filter and amplitude envelopes are only
triggered if a note is played when the articulation of the previous note is less than 1, or a key is not down
at the same time. This Moog instrument is a monophonic instrument, so only one note can sound at a
time. The release section of the amplifier is triggered when the articulation is less than 1 at the time
(duration * articulation).

Page 132 NYQUIST MANUAL

12.13.7. Sample Code/Sounds
Sound 1 (default parameters):
(setf s ’((24 .5 .99)(26 .5 .99)(28 .5 .99)(29 .5 .99)(31 2 1)))
(play (moog s))

Sound 2 (articulation, with amplitude release):
(setf s ’((24 .5 .5)(26 .5 1)(28 .5 .25)(29 .5 1)(31 1 .8)))
(play (moog s :amp-release .2))

Sound 3 (glide):
(setf s ’((24 .5 .5)(38 .5 1)(40 .5 .25)

(53 .5 1)(55 2 1)(31 2 .8)(36 2 .8)))
(play (moog s :amp-release .2 :glide .5))

Sound 4 (keyword parameters): Filter attack and decay are purposely longer than notes being played
with articulation equal to 1.

(setf s ’((20 .5 1)(27 .5 1)(26 .5 1)(21 .5 1)
(20 .5 1)(27 .5 1)(26 .5 1)(21 .5 1)))

(play (moog s :shape-osc1 *tri-table* :shape-osc2 *tri-table*
:filter-attack 2 :filter-decay 2
:filter-cutoff 300 :contour .8 :glide .2 :Q 8))

Sound 5: This example illustrates the ability to completely define a new synthesizer with different
parameters creating a drastically different sound. Sine waves are used for wavetables. There is a high
value for glide.

(defun my-moog (freq) (moog freq
:range-osc1 3 :range-osc2 2 :range-osc3 4
:detun2 -.043155 :detun3 .015016
:noiselevel 0
:filter-cutoff 400 :Q .1 :contour .0000001
:filter-attack 0 :filter-decay .01 :filter-sustain 1
:shape-osc1 *sine-table* :shape-osc2 *sine-table*
:shape-osc3 *sine-table* :volume-osc1 1 :volume-osc2 1
:volume-osc3 .1 :amp-attack .1 :amp-decay 0
:amp-sustain 1 :amp-release .3 :glide 2))

(setf s ’((80 .4 .75)(28 .2 1)(70 .5 1)(38 1 .5)))
(play (my-moog s))

Sound 6: This example has another variation on the default parameters.

(setf s ’((24 .5 .99)(26 .5 .99)(28 .5 .99)(29 .5 .99)(31 2 1)))
(play (moog s :shape-osc1 *tri-table* :shape-osc2 *tri-table*

:filter-attack .5 :contour .5))

EXTENDING NYQUIST Page 133

Appendix I
Extending Nyquist

WARNING: Nyquist sound functions look almost like a human wrote them; they even have a fair
number of comments for human readers. Don’t be fooled: virtually all Nyquist functions are written by a
special translator. If you try to write a new function by hand, you will probably not succeed, and even if
you do, you will waste a great deal of time. (End of Warning.)

I.1. Translating Descriptions to C Code
The translator code used to extend Nyquist resides in the trnsrc directory. This directory also

contains a special init.lsp, so if you start XLisp or Nyquist in this directory, it will automatically read
init.lsp, which in turn will load the translator code (which resides in several files).

Also in the trnsrc directory are a number of .alg files, which contain the source code for the
translator (more on these will follow), and a number of corresponding .h and .c files.

To translate a .alg file to .c and .h files, you start XLisp or Nyquist in the trnsrc directory and
type

(translate "prod")

where "prod" should really be replaced by the filename (without a suffix) you want to translate. Be
sure you have a saved, working copy of Nyquist or Xlisp before you recompile!

Note: On the Macintosh, just run Nyquist out of the runtime directory and then use the Load menu
command to load init.lsp from the trnsrc directory. This will load the translation code and change
Nyquist’s current directory to trnsrc so that commands like (translate "prod") will work.

I.2. Rebuilding Nyquist
After generating prod.c and prod.h, you need to recompile Nyquist. For Unix systems, you will

want to generate a new Makefile. Modify transfiles.lsp in your main Nyquist directory, run Xlisp
or Nyquist and load makefile.lsp. Follow the instructions to set your machine type, etc., and
execute (makesrc) and (makefile).

I.3. Accessing the New Function
The new Lisp function will generally be named with a snd- prefix, e.g. snd-prod. You can test this

by running Nyquist. Debugging is usually a combination of calling the code from within the interpreter,
reading the generated code when things go wrong, and using a C debugger to step through the inner loop
of the generated code. An approach I like is to set the default sample rate to 10 hertz. Then, a one-second
sound has only 10 samples, which are easy to print and study on a text console.

For some functions, you must write some Lisp code to impose ordinary Nyquist behaviors such as
stretching and time shifting. A good approach is to find some structurally similar functions and see how
they are implemented. Most of the Lisp code for Nyquist is in nyquist.lsp.

Finally, do not forget to write up some documentation. Also, contributions are welcome. Send your
.alg file, documentation, Lisp support functions for nyquist.lsp, and examples or test programs to
rbd@cs.cmu.edu. I will either put them in the next release or make them available at a public ftp site.

Page 134 NYQUIST MANUAL

I.4. Why Translation?
Many of the Nyquist signal processing operations are similar in form, but they differ in details. This

code is complicated by many factors: Nyquist uses lazy evaluation, so the operator must check to see that
input samples are available before trying to access them. Nyquist signals can have different sample rates,
different block sizes, different block boundaries, and different start times, all of which must be taken into
account. The number of software tests is enormous. (This may sound like a lot of overhead, but the
overhead is amortized over many iterations of the inner loop. Of course setting up the inner loop to run
efficiently is one more programming task.)

The main idea behind the translation is that all of the checks and setup code are similar and relatively
easy to generate automatically. Programmers often use macros for this sort of task, but the C macro
processor is too limited for the complex translation required here. To tell the translator how to generate
code, you write .alg files, which provide many details about the operation in a declarative style. For
example, the code generator can make some optimizations if you declare that two input signals are
commutative (they can be exchanged with one another). The main part of the .alg file is the inner loop
which is the heart of the signal processing code.

I.5. Writing a .alg File
To give you some idea how functions are specified, here is the specification for snd-prod, which

generates over 250 lines of C code:
(PROD-ALG
(NAME "prod")
(ARGUMENTS ("sound_type" "s1") ("sound_type" "s2"))
(START (MAX s1 s2))
(COMMUTATIVE (s1 s2))
(INNER-LOOP "output = s1 * s2")
(LINEAR s1 s2)
(TERMINATE (MIN s1 s2))
(LOGICAL-STOP (MIN s1 s2))

)

A .alg file is always of the form:

(name
(attribute value)
(attribute value)
...

)

There should be just one of these algorithms descriptions per file. The name field is arbitrary: it is a Lisp
symbol whose property list is used to save the following attribute/value pairs. There are many attributes
described below. For more examples, see the .alg files in the trnsrc directory.

Understanding what the attributes do is not easy, so here are three recommendations for implementors.
First, if there is an existing Nyquist operator that is structurally similar to something you want to
implement, make a copy of the corresponding .alg file and work from there. In some cases, you can
merely rename the parameters and substitute a new inner loop. Second, read the generated code,
especially the generated inner loop. It may not all make sense, but sometimes you can spot obvious errors
and work your way back to the error in the .alg file. Third, if you know where something bad is
generated, see if you can find where the code is generated. (The code generator files are listed in
init.lsp.) This code is poorly written and poorly documented, but in some cases it is fairly

EXTENDING NYQUIST Page 135

straightforward to determine what attribute in the .alg file is responsible for the erroneous output.

I.6. Attributes
Here are the attributes used for code generation. Attributes and values may be specified in any order.

(NAME "string") specifies a base name for many identifiers. In particular, the generated filenames will
be string.c and string.h, and the XLisp function generated will be snd-string.

(ARGUMENTS arglist)
describes the arguments to be passed from XLisp. Arglist has the form: (type1
name1) (type2 name2) ..., where type and name are strings in double quotes,
e.g. ("sound_type" "s") specifies a SOUND parameter named s. Note that arglist is
not surrounded by parentheses. As seen in this example, the type names and
parameter names are C identifiers. Since the parameters are passed in from XLisp,
they must be chosen from a restricted set. Valid type names are: "sound_type",
"rate_type", "double", "long", "string", and "LVAL".

(STATE statelist)describes additional state (variables) needed to perform the computation. A statelist
is similar to an arglist (see ARGUMENTS above), and has the form: (type1 name1
init1 [TEMP]) (type2 name2 init2 [TEMP]) The types and names are
as in arglist, and the "inits" are double-quoted initial values. Initial values may be
any C expression. State is initialized in the order implied by statelist when the
operation is first called from XLisp. If TEMP is omitted the state is preserved in a
structure until the sound computation completes. Otherwise, the state variable only
exists at state initialization time.

(INNER-LOOP innerloop-code)
describes the inner loop, written as C code. The innerloop-code is in double quotes,
and may extend over multiple lines. To make generated code extra-beautiful, prefix
each line of innerloop-code with 12 spaces. Temporary variables should not be
declared at the beginning of innerloop-code. Use the INNER-LOOP-LOCALS
attribute instead. Within innerloop-code, each ARGUMENT of type sound_type must
be referenced exactly one time. If you need to use a signal value twice, assign it once
to a temporary and use the temporary twice. The inner loop must also assign one time
to the psuedo-variable output. The model here is that the name of a sound argument
denotes the value of the corresponding signal at the current output sample time. The
inner loop code will be called once for each output sample. In practice, the code
generator will substitute some expression for each signal name. For example,
prod.alg specifies

(INNER-LOOP "output = s1 * s2")

(s1 and s2 are ARGUMENTS.) This expands to the following inner loop in prod.c:

*out_ptr_reg++ = *s1_ptr_reg++ * *s2_ptr_reg++;

In cases where arguments have different sample rates, sample interpolation is in-
lined, and the expressions can get very complex. The translator is currently very
simple-minded about substituting access code in the place of parameter names, and
this is a frequent source of bugs. Simple string substitution is performed, so you must
not use a parameter or state name that is a substring of another. For example, if two
sound parameters were named s and s2, the translator might substitute for ‘‘s’’ in
two places rather than one. If this problem occurs, you will almost certainly get a C
compiler syntax error. The fix is to use ‘‘more unique’’ parameter and state variable
names.

(INNER-LOOP-LOCALS "innerloop-code")
The innerloop-code contains C declarations of local variables set and referenced in

Page 136 NYQUIST MANUAL

the inner loop.

(SAMPLE-RATE "expr")
specifies the output sample rate; expr can be any C expression, including a parameter
from the ARGUMENTS list. You can also write (SAMPLE-RATE (MAX name1
name2 ...)) where names are unquoted names of arguments.

(SUPPORT-HEADER "c-code")
specifies arbitrary C code to be inserted in the generated .h file. The code typically
contains auxiliarly function declarations and definitions of constants.

(SUPPORT-FUNCTIONS "c-code")
specifies arbitrary C code to be inserted in the generated .c file. The code typically
contains auxiliarly functions and definitions of constants.

(FINALIZATION "c-code")
specifies code to execute when the sound has been fully computed and the state
variables are about to be decallocated. This is the place to deallocate buffer memory,
etc.

(CONSTANT "name1" "name2" ...)
specifies state variables that do not change value in the inner loop. The values of
state variables are loaded into registers before entering the inner loop so that access
will be fast within the loop. On exiting the inner loop, the final register values are
preserved in a ‘‘suspension’’ structure. If state values do not change in the inner
loop, this CONSTANT declaration can eliminate the overhead of storing these
registers.

(START spec) specifies when the output sound should start (a sound is zero and no processing is
done before the start time). The spec can take several forms: (MIN name1 name2
...) means the start time is the minimum of the start times of input signals name1,
name2, Note that these names are not quoted.

(TERMINATE spec)
specifies when the output sound terminates (a sound is zero after this termination time
and no more samples are computed). The spec can take several forms: (MIN name1
name2 ...) means the terminate time is the minimum of the terminate times of
input arguments name1, name2, Note that these names are not quoted. To
terminate at the time of a single argument s1, specify (MIN s1). To terminate after
a specific duration, use (AFTER "c-expr"), where c-expr is a C variable or
expression. To terminate at a particular time, use (AT "c-expr"). spec may also be
COMPUTED, which means to use the maximum sample rate of any input signal.

(LOGICAL-STOP spec)
specifies the logical stop time of the output sound. This spec is just like the one for
TERMINATE. If no LOGICAL-STOP attribute is present, the logical stop will
coincide with the terminate time.

(ALWAYS-SCALE name1 name2 ...)
says that the named sound arguments (not in quotes) should always be multiplied by a
scale factor. This is a space-time tradeoff. When Nyquist sounds are scaled, the scale
factor is merely stored in a structure. It is the responsibility of the user of the samples
to actually scale them (unless the scale factor is exactly 1.0). The default is to
generate code with and without scaling and to select the appropriate code at run time.
If there are N signal inputs, this will generate 2N versions of the code. To avoid this
code explosion, use the ALWAYS-SCALE attribute.

(INLINE-INTERPOLATION T)
specifies that sample rate interpolation should be performed in-line in the inner loop.
There are two forms of sample rate interpolation. One is intended for use when the

EXTENDING NYQUIST Page 137

rate change is large and many points will be interpolated. This form uses a divide
instruction and some setup at the low sample rate, but the inner loop overhead is just
an add. The other form, intended for less drastic sample rate changes, performs
interpolation with 2 multiplies and several adds per sample at the high sample rate.
Nyquist generates various inner loops and selects the appropriate one at run-time. If
INLINE-INTERPOLATION is not set, then much less code is generated and
interpolation is performed as necessary by instantiating a separate signal processing
operation.

(STEP-FUNCTION name1 name2 ...)
Normally all argument signals are linearly interpolated to the output sample rate. The
linear interpolation can be turned off with this attribute. This is used, for example, in
Nyquist variable filters so that filter coefficients are computed at low sample rates. In
fact, this attribute was added for the special case of filters.

(DEPENDS spec1 spec2 ...)
Specifies dependencies. This attribute was also introduced to handle the case of filter
coefficients (but may have other applications.) Use it when a state variable is a
function of a potentially low-sample-rate input where the input is in the
STEP-FUNCTION list. Consider a filter coefficient that depends upon an input
signal such as bandwidth. In this case, you want to compute the filter coefficient only
when the input signal changes rather than every output sample, since output may
occur at a much higher sample rate. A spec is of the form

("name" "arg" "expr" [TEMP "type"])

which is interpreted as follows: name depends upon arg; when arg changes,
recompute expr and assign it to name. The name must be declared as a STATE
variable unless TEMP is present, in which case name is not preserved and is used only
to compute other state. Variables are updated in the order of the DEPENDS list.

(FORCE-INTO-REGISTER name1 name2 ...)
causes name1, name2, ... to be loaded into registers before entering the inner loop. If
the inner loop references a state variable or argument, this happens automatically. Use
this attribute only if references are ‘‘hidden’’ in a #define’d macro or referenced in
a DEPENDS specification.

(NOT-REGISTER name1 name2 ...)
specifies state and arguments that should not be loaded into registers before entering
an inner loop. This is sometimes an optimization for infrequently accessed state.

(NOT-IN-INNER-LOOP "name1" "name2" ...)
says that certain arguments are not used in the inner loop. Nyquist assumes all
arguments are used in the inner loop, so specify them here if not. For example, tables
are passed into functions as sounds, but these sounds are not read sample-by-sample
in the inner loop, so they should be listed here.

(MAINTAIN ("name1" "expr1") ("name2" "expr2") ...)
Sometimes the IBM XLC compiler generates better loop code if a variable referenced
in the loop is not referenced outside of the loop after the loop exit. Technically,
optimization is better when variables are dead upon loop exit. Sometimes, there is an
efficient way to compute the final value of a state variable without actually
referencing it, in which case the variable and the computation method are given as a
pair in the MAINTAIN attribute. This suppresses a store of the value of the named
variable, making it a dead variable. Where the store would have been, the expression
is computed and assigned to the named variable. See partial.alg for an
example. This optimization is never necessary and is only for fine-tuning.

(LINEAR name1 name2 ...)

Page 138 NYQUIST MANUAL

specifies that named arguments (without quotes) are linear with respect to the output.
What this really means is that it is numerically OK to eliminate a scale factor from
the named argument and store it in the output sound descriptor, avoiding a potential
multiply in this inner loop. For example, both arguments to snd-prod (signal
multiplication) are ‘‘linear.’’ The inner loop has a single multiplication operator to
multiply samples vs. a potential 3 multiplies if each sample were also scaled. To
handle scale factors on the input signals, the scale factors are automatically multiplied
and the product becomes the scale factor of the resulting output. (This effectively
‘‘passes the buck’’ to some other, or perhaps more than one, signal processing
function, which is not always optimal. On the other hand, it works great if you
multiply a number of scaled signals together: all the scale factors are ultimately
handled with a single multiply.)

(INTERNAL-SCALING name1 name2 ...)
indicates that scaling is handled in code that is hidden from the code generator for
name1, name2, ..., which are sound arguments. Although it is the responsibility of the
reader of samples to apply any given scale factor, sometimes scaling can be had for
free. For example, the snd-recip operation computes the reciprocal of the input
samples by peforming a division. The simple approach would be to specify an inner
loop of output = 1.0/s1, where s1 is the input. With scaling, this would
generate an inner loop something like this:

*output++ = 1.0 / (s1_scale_factor * *s1++);

but a much better approach would be the following:

*output++ = my_scale_factor / *s1++

where my_scale_factor is initialized to 1.0 / s1->scale. Working
backward from the desired inner loop to the .alg inner loop specification, a first
attempt might be to specify:

(INNER-LOOP "output = my_scale_factor / s1")

but this will generate the following:

*output++=my_scale_factor/(s1_scale_factor * *s1++);

Since the code generator does not know that scaling is handled elsewhere, the scaling
is done twice! The solution is to put s1 in the INTERNAL-SCALING list, which
essentially means ‘‘I’ve already incorporated scaling into the algorithm, so suppress
the multiplication by a scale factor.’’

(COMMUTATIVE (name1 name2 ...))
specifies that the results will not be affected by interchanging any of the listed
arguments. When arguments are commutative, Nyquist rearranges them at run-time
into decreasing order of sample rates. If interpolation is in-line, this can dramatically
reduce the amount of code generated to handle all the different cases. The prime
example is prod.alg.

(TYPE-CHECK "code")
specifies checking code to be inserted after argument type checking at initialization
time. See downproto.alg for an example where a check is made to guarantee that
the output sample rate is not greater than the input sample rate. Otherwise an error is
raised.

EXTENDING NYQUIST Page 139

I.7. Generated Names
The resulting .c file defines a number of procedures. The procedures that do actual sample

computation are named something like name_interp-spec_FETCH, where name is the NAME attribute from
the .alg file, and interp-spec is an interpolation specification composed of a string of the following
letters: n, s, i, and r. One letter corresponds to each sound argument, indicating no interpolation (r),
scaling only (s), ordinary linear interpolation with scaling (i), and ramp (incremental) interpolation with
scaling (r). The code generator determines all the combinations of n, s, i, and r that are necessary and
generates a separate fetch function for each.

Another function is name_toss_fetch, which is called when sounds are not time-aligned and some
initial samples must be discarded from one or more inputs.

The function that creates a sound is snd_make_name. This is where state allocation and initialization
takes place. The proper fetch function is selected based on the sample rates and scale factors of the sound
arguments, and a sound_type is returned.

Since Nyquist is a functional language, sound operations are not normally allowed to modify their
arguments through side effects, but even reading samples from a sound_type causes side effects. To
hide these from the Nyquist programmer, sound_type arguments are first copied (this only copies a
small structure. The samples themselves are on a shared list). The function snd_name performs the
necessary copies and calls snd_make_name. It is the snd_name function that is called by XLisp. The
XLisp name for the function is SND-NAME. Notice that the underscore in C is converted to a dash in
XLisp. Also, XLisp converts identifiers to upper case when they are read, so normally, you would type
snd-name to call the function.

I.8. Scalar Arguments
If you want the option of passing either a number (scalar) or a signal as one of the arguments, you have

two choices, neither of which is automated. Choice 1 is to coerce the constant into a signal from within
XLisp. The naming convention would be to DEFUN a new function named NAME or S-NAME for
ordinary use. The NAME function tests the arguments using XLisp functions such as TYPE-OF,
NUMBERP, and SOUNDP. Any number is converted to a SOUND, e.g. using CONST. Then SND-NAME
is called with all sound arguments. The disadvantage of this scheme is that scalars are expanded into a
sample stream, which is slower than having a special inner loop where the scalar is simply kept in a
register, avoiding loads, stores, and addressing overhead.

Choice 2 is to generate a different sound operator for each case. The naming convention here is to
append a string of c’s and v’s, indicating constant (scalar) or variable (signal) inputs. For example, the
reson operator comes in four variations: reson, resoncv, resonvc, and resonvv. The
resonvc version implements a resonating filter with a variable center frequency (a sound type) and a
constant bandwidth (a FLONUM). The RESON function in Nyquist is an ordinary Lisp function that
checks types and calls one of SND-RESON, SND-RESONCV, SND-RESONVC, or SND-RESONVV.

Since each of these SND- functions performs further selection of implementation based on sample rates
and the need for scaling, there are 25 different functions for computing RESON! So far, however,
Nyquist is smaller than Common Lisp and it’s about half the size of Microsoft Word. Hopefully,
exponential growth in memory density will outpace linear (as a function of programming effort) growth
of Nyquist.

Page 140 NYQUIST MANUAL

OPEN SOUND CONTROL AND NYQUIST Page 141

Appendix II
Open Sound Control and Nyquist

Open Sound Control (OSC) is a simple protocol for communicating music control parameters between
software applications and across networks. For more information, see
http://www.cnmat.berkeley.edu/OpenSoundControl/. The Nyquist implementation of
Open Sound Control is simple: an array of floats can be set by OSC messages and read by Nyquist
functions. That is about all there is to it.

Note: Open Sound Control must be enabled by calling (osc-enable t). If this fails under
Windows, see the installation instructions regarding SystemRoot.

To control something in (near) real-time, you need to access a slider value as if it a signal, or more
properly, a Nyquist SOUND type. The function snd-slider, described in Section 5.6.1, takes a slider
number and returns a SOUND type representing the current value of the slider. To fully understand this
function, you need to know something about how Nyquist is actually computing sounds.

Sounds are normally computed on demand. So the result returned by snd-slider does not
immediately compute any samples. Samples are only computed when something tries to use this signal.
At that time, the slider value is read. Normally, if the slider is used to control a sound, you will hear
changes in the sound pretty soon after the slider value changes. However, one thing that can interfere with
this is that SOUND samples are computed in blocks of about 1000 samples. When the slider value is read,
the same value is used to fill a block of 1000 samples, so even if the sample rate is 44,100 Hz, the
effective slider sample rate is 44,100/1000, or 44.1 Hz. If you give the slider a very low sample rate, say
1000, then slider value changes will only be noticed by Nyquist approximately once per second. For this
reason, you should normally use the audio sample rate (typically 44,100 Hz) for the rate of the
snd-slider output SOUND. (Yes, this is terribly wasteful to represent each slider value with 1000
samples, but Nyquist was not designed for low-latency computation, and this is an expedient work-
around.)

In addition to reading sliders as continually changing SOUNDs, you can get the slider value as a Lisp
FLONUM (a floating point number) using get-slider-value, described in Section 5.6.1. This might
be useful if you are computing a sequence of many notes (or other sound events) and want to apply the
current slider value to the whole note or sound event.

Note that if you store the value returned by snd-slider in a variable, you will capture the history of
the slider changes. This will take a lot of memory, so be careful.

Suppose you write a simple expression such as (hzosc (mult 1000 (snd-slider 0
...))) to control an oscillator frequency with a slider. How long does this sound last? The duration of
hzosc is the duration of the frequency control, so what is the duration of a slider? To avoid infinitely
long signals, you must specify a duration as one of the parameters of snd-slider.

You might be thinking, what if I just want to tell the slider when to stop? At present, you cannot do
that, but in the future there should be a function that stops when its input goes to zero. Then, moving a
slider to zero could end the signal (and if you multiplied a complex sound by one of these ending
functions, everything in the sound would end and be garbage collected).

Another thing you might want to do with interactive control is start some sound. The trigger

Page 142 NYQUIST MANUAL

function computes an instance of a behavior each time an input SOUND goes from zero to greater-than-
zero. This could be used, for example, to create a sequence of notes.

The snd-slider function has some parameters that may be unfamiliar. The second parameter, t0, is
the starting time of the sound. This should normally be (local-to-global 0), an expression that
computes the instantiation time of the current expression. This will often be zero, but if you call
snd-slider from inside a seq or seq-rep, the starting time may not be zero.

The srate parameter is the sample rate to return. This should normally be the audio sample rate you are
working with, which is typically *default-sound-srate*.

II.1. Sending Open Sound Control Messages
A variety of programs support OSC. The only OSC message interpreted by Nyquist has an address of

/slider, and two parameters: an integer slider number and a float value, nominally from 0.0 to 1.0.

Two small programs are included in the Nyquist distribution for sending OSC messages. (Both can be
found in the same directory as the nyquist executable.) The first one, osc-test-client sends a
sequence of messages that just cause slider 0 to ramp slowly up and down. If you run this on a command
line, you can use "?" or "h" to get help information. There is an interactive mode that lets you send each
OSC message by typing RETURN.

II.2. The ser-to-osc Program
The second program is ser-to-osc, a program that reads serial input (for example from a PIC-based

microcontroller) and sends OSC messages. Run this command-line program from a shell (a terminal
window under OS X or Linux; use the CMD program under Windows). You must name the serial input
device on the command line, e.g. under OS X, you might run:

./ser-to-osc /dev/tty.usbserial-0000103D

(Note that the program name is preceded by ‘‘./". This tells the shell exactly where to find the
executable program in case the current directory is not on the search path for executable programs.)
Under Windows, you might run:

ser-to-osc com4

(Note that you do not type ‘‘./’’ in front of a windows program.)

To use ser-to-osc, you will have to find the serial device. On the Macintosh and Linux, try the
following:

ls /dev/*usb*

This will list all serial devices with ‘‘usb’’ in their names. Probably, one will be a name similar to
/dev/tty.usbserial-0000103D. The ser-to-osc program will echo data that it receives, so
you should know if things are working correctly.

Under Windows, open Control Panel from the Start menu, and open the System control panel. Select
the Hardware tab and click the Device Manager button. Look in the device list under Ports (COM &
LPT). When you plug in your serial or USB device, you should see a new entry appear, e.g. COM4. This is
the device name you need.

The format for the serial input is: any non-whitespace character(s), a slider number, a slider value, and

OPEN SOUND CONTROL AND NYQUIST Page 143

a newline (control-j or ASCII 0x0A). These fields need to be separated by tabs or spaces. An optional
carriage return (control-m or ASCII 0x0D) preceding the ASCII 0x0A is ignored. The slider number
should be in decimal, and theh slider value is a decimal number from 0 to 255. This is scaled to the range
0.0 to 1.0 (so an input of 255 translates to 1.0).

There is a simple test program in demos/osc-test.lsp you can run to try out control with Open
Sound Control. There are two examples in that file. One uses snd-slider to control the frequency of
an oscillator. The other uses get-slider-value to control the pitch of grains in a granular synthesis
process.

Page 144 NYQUIST MANUAL

INTGEN Page 145

Appendix III
Intgen

This documentation describes Intgen, a program for generating XLISP to C interfaces. Intgen works by
scanning .h files with special comments in them. Intgen builds stubs that implement XLISP SUBR’s.
When the SUBR is called, arguments are type-checked and passed to the C routine declared in the .h file.
Results are converted into the appropriate XLISP type and returned to the calling XLISP function. Intgen
lets you add C functions into the XLISP environment with very little effort.

The interface generator will take as command-line input:

• the name of the .c file to generate (do not include the .c extension; e.g. write xlexten,
not xlexten.c);

• a list of .h files.
Alternatively, the command line may specify a command file from which to read file names. The
command file name should be preceded by "@", for example:

intgen @sndfns.cl

reads sndfns.cl to get the command-line input. Only one level of indirection is allowed.

The output is:

• a single .c file with one SUBR defined for each designated routine in a .h file.

• a .h file that declares each new C routine. E.g. if the .c file is named xlexten.c, this file
will be named xlextendefs.h;

• a .h file that extends the SUBR table used by Xlisp. E.g. if the .c file is named
xlexten.c, then this file is named xlextenptrs.h;

• a .lsp file with lisp initialization expressions copied from the .h files. This file is only
generated if at least one initialization expression is encountered.

For example, the command line
intgen seint ~setypes.h access.h

generates the file seint.c, using declarations in setypes.h and access.h. Normally, the .h files
are included by the generated file using #include commands. A ~ before a file means do not include
the .h file. (This may be useful if you extend xlisp.h, which will be included anyway). Also
generated will be setintdefs.h and seintptrs.h.

III.0.1. Extending Xlisp
Any number of .h files may be named on the command line to Intgen, and Intgen will make a single

.c file with interface routines for all of the .h files. On the other hand, it is not necessary to put all of
the extensions to Xlisp into a single interface file. For example, you can run Intgen once to build
interfaces to window manager routines, and again to build interfaces to a new data type. Both interfaces
can be linked into Xlisp.

To use the generated files, you must compile the .c files and link them with all of the standard Xlisp
object files. In addition, you must edit the file localdefs.h to contain an #include for each
*defs.h file, and edit the file localptrs.h to include each *ptrs.h file. For example, suppose
you run Intgen to build soundint.c, fugueint.c, and tableint.c. You would then edit
localdefs.h to contain the following:

Page 146 NYQUIST MANUAL

#include "soundintdefs.h"
#include "fugueintdefs.h"
#include "tableintdefs.h"

and edit localptrs.h to contain:
#include "soundintptrs.h"
#include "fugueintptrs.h"
#include "tableintptrs.h"

These localdefs.h and localptrs.h files are in turn included by xlftab.c which is where
Xlisp builds a table of SUBRs.

To summarize, building an interface requires just a few simple steps:

• Write C code to be called by Xlisp interface routines. This C code does the real work, and in
most cases is completely independent of Xlisp.

• Add comments to .h files to tell Intgen which routines to build interfaces to, and to specify
the types of the arguments.

• Run Intgen to build interface routines.

• Edit localptrs.h and localdefs.h to include generated .h files.

• Compile and link Xlisp, including the new C code.

III.1. Header file format
Each routine to be interfaced with Xlisp must be declared as follows:

type-name routine-name(); /* LISP: (func-name type1 type2 ...) */

The comment may be on the line following the declaration, but the declaration and the comment must
each be on no more than one line. The characters LISP: at the beginning of the comment mark routines
to put in the interface. The comment also gives the type and number of arguments. The function, when
accessed from lisp will be known as func-name, which need not bear any relationship to routine-name.
By convention, underscores in the C routine-name should be converted to dashes in func-name, and
func-name should be in all capitals. None of this is enforced or automated though.

Legal type_names are:

LVAL returns an Xlisp datum.

atom_type equivalent to LVAL, but the result is expected to be an atom.

value_type a value as used in Dannenberg’s score editor.

event_type an event as used in Dannenberg’s score editor.

int interface will convert int to Xlisp FIXNUM.

boolean interface will convert int to T or nil.

float or doubleinterface converts to FLONUM.

char * or string or string_type
interface converts to STRING. The result string will be copied into the XLISP heap.

void interface will return nil.
It is easy to extend this list. Any unrecognized type will be coerced to an int and then returned as a

FIXNUM, and a warning will be issued.

INTGEN Page 147

The ‘‘*’’ after char must be followed by routine-name with no intervening space.

Parameter types may be any of the following:

FIXNUM C routine expects an int.

FLONUM or FLOATC routine expects a double.

STRING C routine expects char *, the string is not copied.

VALUE C routine expects a value_type. (Not applicable to Fugue.)

EVENT C routine expects an event_type. (Not applicable to Fugue.)

ANY C routine expects LVAL.

ATOM C routine expects LVAL which is a lisp atom.

FILE C routine expects FILE *.

SOUND C routine expects a SoundPtr.
Any of these may be followed by ‘‘*’’: FIXNUM*, FLONUM*, STRING*, ANY*, FILE*, indicating C

routine expects int *, double *, char **, LVAL *, or FILE ** . This is basically a mechanism
for returning more than one value, not a mechanism for clobbering XLisp values. In this spirit, the
interface copies the value (an int, double, char *, LVAL, or FILE *) to a local variable and passes
the address of that variable to the C routine. On return, a list of resulting ‘‘*’’ parameters is constructed
and bound to the global XLisp symbol *RSLT*. (Strings are copied.) If the C routine is void, then the
result list is also returned by the corresponding XLisp function.

Note 1: this does not support C routines like strcpy that modify strings, because the C routine gets a
pointer to the string in the XLisp heap. However, you can always add an intermediate routine that
allocates space and then calls strcpy, or whatever.

Note 2: it follows that a new XLisp STRING will be created for each STRING* parameter.

Note 3: putting results on a (global!) symbol seems a bit unstructured, but note that one could write a
multiple-value binding macro that hides this ugliness from the user if desired. In practice, I find that
pulling the extra result values from *RSLT* when needed is perfectly acceptable.

For parameters that are result values only, the character ‘‘^’’ may be substituted for ‘‘*’’. In this case,
the parameter is not to be passed in the XLisp calling site. However, the address of an initialized local
variable of the given type is passed to the corresponding C function, and the resulting value is passed
back through *RSLT* as ordinary result parameter as described above. The local variables are initialized
to zero or NULL.

III.2. Using #define’d macros
If a comment of the form:

/* LISP: type-name (routine-name-2 type-1 type-2 ...) */

appears on a line by itself and there was a #define on the previous line, then the preceding #define
is treated as a C routine, e.g.

#define leftshift(val, count) ((val) << (count))
/* LISP: int (LOGSHIFT INT INT) */

will implement the LeLisp function LOGSHIFT.

Page 148 NYQUIST MANUAL

The type-name following ‘‘LISP:’’ should have no spaces, e.g. use ANY*, not ANY *.

III.3. Lisp Include Files
Include files often define constants that we would like to have around in the Lisp world, but which are

easier to initialize just by loading a text file. Therefore, a comment of the form:
/* LISP-SRC: (any lisp expression) */

will cause Intgen to open a file name.lsp and append
(any lisp expression)

to name.lsp, where name is the interface name passed on the command line. If none of the include files
examined have comments of this form, then no name.lsp file is generated. Note: the LISP-SRC
comment must be on a new line.

III.4. Example
This file was used for testing Intgen. It uses a trick (ok, it’s a hack) to interface to a standard library

macro (tolower). Since tolower is already defined, the macro ToLower is defined just to give Intgen a
name to call. Two other routines, strlen and tough, are interfaced as well.

/* igtest.h -- test interface for intgen */

#define ToLower(c) tolower(c)
/* LISP: int (TOLOWER FIXNUM) */

int strlen(); /* LISP: (STRLEN STRING) */

void tough();
/* LISP: (TOUGH FIXNUM* FLONUM* STRING ANY FIXNUM) */

III.5. More Details
Intgen has some compiler switches to enable/disable the use of certain types, including VALUE and

EVENT types used by Dannenberg’s score editing work, the SOUND type used by Fugue, and DEXT and
SEXT types added for Dale Amon. Enabling all of these is not likely to cause problems, and the chances
of an accidental use of these types getting through the compiler and linker seems very small.

XLISP: AN OBJECT-ORIENTED LISP Page 149

Appendix IV
XLISP: An Object-oriented Lisp

Version 2.0

February 6, 1988

by
David Michael Betz

127 Taylor Road
Peterborough, NH 03458

Copyright (c) 1988, by David Michael Betz
All Rights Reserved

Permission is granted for unrestricted non-commercial use

Page 150 NYQUIST MANUAL

IV.1. Introduction
XLISP is an experimental programming language combining some of the features of Common Lisp

with an object-oriented extension capability. It was implemented to allow experimentation with object-
oriented programming on small computers.

Implementations of XLISP run on virtually every operating system. XLISP is completely written in the
programming language C and is easily extended with user written built-in functions and classes. It is
available in source form to non-commercial users.

Many Common Lisp functions are built into XLISP. In addition, XLISP defines the objects Object and
Class as primitives. Object is the only class that has no superclass and hence is the root of the class
hierarchy tree. Class is the class of which all classes are instances (it is the only object that is an instance
of itself).

This document is a brief description of XLISP. It assumes some knowledge of LISP and some
understanding of the concepts of object-oriented programming.

I recommend the book Lisp by Winston and Horn and published by Addison Wesley for learning Lisp.
The first edition of this book is based on MacLisp and the second edition is based on Common Lisp.

You will probably also need a copy of Common Lisp: The Language by Guy L. Steele, Jr., published by
Digital Press to use as a reference for some of the Common Lisp functions that are described only briefly
in this document.

IV.2. A Note From The Author
If you have any problems with XLISP, feel free to contact me [me being David Betz - RBD] for help or

advice. Please remember that since XLISP is available in source form in a high level language, many
users [e.g. that Dannenberg fellow - RBD] have been making versions available on a variety of machines.
If you call to report a problem with a specific version, I may not be able to help you if that version runs on
a machine to which I don’t have access. Please have the version number of the version that you are
running readily accessible before calling me.

If you find a bug in XLISP, first try to fix the bug yourself using the source code provided. If you are
successful in fixing the bug, send the bug report along with the fix to me. If you don’t have access to a C
compiler or are unable to fix a bug, please send the bug report to me and I’ll try to fix it.

Any suggestions for improvements will be welcomed. Feel free to extend the language in whatever
way suits your needs. However, PLEASE DO NOT RELEASE ENHANCED VERSIONS WITHOUT
CHECKING WITH ME FIRST!! I would like to be the clearing house for new features added to XLISP.
If you want to add features for your own personal use, go ahead. But, if you want to distribute your
enhanced version, contact me first. Please remember that the goal of XLISP is to provide a language to
learn and experiment with LISP and object-oriented programming on small computers. I don’t want it to
get so big that it requires megabytes of memory to run.

XLISP: AN OBJECT-ORIENTED LISP Page 151

IV.3. XLISP Command Loop
When XLISP is started, it first tries to load the workspace xlisp.wks from the current directory. If

that file doesn’t exist, XLISP builds an initial workspace, empty except for the built-in functions and
symbols.

Then XLISP attempts to load init.lsp from the current directory. It then loads any files named as
parameters on the command line (after appending .lsp to their names).

XLISP then issues the following prompt:
>

This indicates that XLISP is waiting for an expression to be typed.

When a complete expression has been entered, XLISP attempts to evaluate that expression. If the
expression evaluates successfully, XLISP prints the result and then returns to the initial prompt waiting
for another expression to be typed.

IV.4. Special Characters
When XLISP is running from a console, some control characters invoke operations:

• Backspace and Delete characters erase the previous character on the input line (if any).

• Control-U erases the entire input line.

• Control-C executes the TOP-LEVEL function.

• Control-G executes the CLEAN-UP function.

• Control-P executes the CONTINUE function.

• Control-B stops execution and enters the break command loop. Execution can be continued
by typing Control-P or (CONTINUE).

• Control-E turns on character echoing (Linux and Mac OS X only).

• Control-F turns off character echoing (Linux and Mac OS X only).

• Control-T evaluates the INFO function.

IV.5. Break Command Loop
When XLISP encounters an error while evaluating an expression, it attempts to handle the error in the

following way:

If the symbol *breakenable* is true, the message corresponding to the error is printed. If the error
is correctable, the correction message is printed.

If the symbol *tracenable* is true, a trace back is printed. The number of entries printed depends
on the value of the symbol *tracelimit*. If this symbol is set to something other than a number, the
entire trace back stack is printed.

XLISP then enters a read/eval/print loop to allow the user to examine the state of the interpreter in the
context of the error. This loop differs from the normal top-level read/eval/print loop in that if the user
invokes the function continue, XLISP will continue from a correctable error. If the user invokes the

Page 152 NYQUIST MANUAL

function clean-up, XLISP will abort the break loop and return to the top level or the next lower
numbered break loop. When in a break loop, XLISP prefixes the break level to the normal prompt.

If the symbol *breakenable* is nil, XLISP looks for a surrounding errset function. If one is
found, XLISP examines the value of the print flag. If this flag is true, the error message is printed. In any
case, XLISP causes the errset function call to return nil.

If there is no surrounding errset function, XLISP prints the error message and returns to the top level.

IV.6. Data Types
There are several different data types available to XLISP programmers.

• lists

• symbols

• strings

• integers

• characters

• floats

• objects

• arrays

• streams

• subrs (built-in functions)

• fsubrs (special forms)

• closures (user defined functions)

IV.7. The Evaluator
The process of evaluation in XLISP:

• Strings, integers, characters, floats, objects, arrays, streams, subrs, fsubrs and closures
evaluate to themselves.

• Symbols act as variables and are evaluated by retrieving the value associated with their
current binding.

• Lists are evaluated by examining the first element of the list and then taking one of the
following actions:

• If it is a symbol, the functional binding of the symbol is retrieved.

• If it is a lambda expression, a closure is constructed for the function described by the
lambda expression.

• If it is a subr, fsubr or closure, it stands for itself.

• Any other value is an error.
Then, the value produced by the previous step is examined:

• If it is a subr or closure, the remaining list elements are evaluated and the subr or
closure is called with these evaluated expressions as arguments.

XLISP: AN OBJECT-ORIENTED LISP Page 153

• If it is an fsubr, the fsubr is called using the remaining list elements as arguments
(unevaluated).

• If it is a macro, the macro is expanded using the remaining list elements as arguments
(unevaluated). The macro expansion is then evaluated in place of the original macro
call.

IV.8. Lexical Conventions
The following conventions must be followed when entering XLISP programs:

Comments in XLISP code begin with a semi-colon character and continue to the end of the line.

Symbol names in XLISP can consist of any sequence of non-blank printable characters except the
following:

() ’ ‘ , " ;

Uppercase and lowercase characters are not distinguished within symbol names. All lowercase characters
are mapped to uppercase on input.

Integer literals consist of a sequence of digits optionally beginning with a + or -. The range of values
an integer can represent is limited by the size of a C long on the machine on which XLISP is running.

Floating point literals consist of a sequence of digits optionally beginning with a + or - and including
an embedded decimal point. The range of values a floating point number can represent is limited by the
size of a C float (double on machines with 32 bit addresses) on the machine on which XLISP is
running.

Literal strings are sequences of characters surrounded by double quotes. Within quoted strings the
‘‘\’’ character is used to allow non-printable characters to be included. The codes recognized are:

• \\ means the character ‘‘\’’

• \n means newline

• \t means tab

• \r means return

• \f means form feed

• \nnn means the character whose octal code is nnn

IV.9. Readtables
The behavior of the reader is controlled by a data structure called a readtable. The reader uses the

symbol *readtable* to locate the current readtable. This table controls the interpretation of input
characters. It is an array with 128 entries, one for each of the ASCII character codes. Each entry contains
one of the following things:

• NIL — Indicating an invalid character

• :CONSTITUENT — Indicating a symbol constituent

• :WHITE-SPACE — Indicating a whitespace character

• (:TMACRO . fun) — Terminating readmacro

Page 154 NYQUIST MANUAL

• (:NMACRO . fun) — Non-terminating readmacro

• :SESCAPE — Single escape character (’\’)

• :MESCAPE — Multiple escape character (’|’)

In the case of :TMACRO and :NMACRO, the fun component is a function. This can either be a built-in
readmacro function or a lambda expression. The function should take two parameters. The first is the
input stream and the second is the character that caused the invocation of the readmacro. The readmacro
function should return NIL to indicate that the character should be treated as white space or a value
consed with NIL to indicate that the readmacro should be treated as an occurence of the specified value.
Of course, the readmacro code is free to read additional characters from the input stream.

XLISP defines several useful read macros:

• ’<expr> == (quote <expr>)

• #’<expr> == (function <expr>)

• #(<expr>...) == an array of the specified expressions

• #x<hdigits> == a hexadecimal number (0-9,A-F)

• #o<odigits> == an octal number (0-7)

• #b<bdigits> == a binary number (0-1)

• #\<char> == the ASCII code of the character

• #| ... |# == a comment

• #:<symbol> == an uninterned symbol

• ‘<expr> == (backquote <expr>)

• ,<expr> == (comma <expr>)

• ,@<expr> == (comma-at <expr>)

IV.10. Lambda Lists
There are several forms in XLISP that require that a ‘‘lambda list’’ be specified. A lambda list is a

definition of the arguments accepted by a function. There are four different types of arguments.

The lambda list starts with required arguments. Required arguments must be specified in every call to
the function.

The required arguments are followed by the &optional arguments. Optional arguments may be
provided or omitted in a call. An initialization expression may be specified to provide a default value for
an &optional argument if it is omitted from a call. If no initialization expression is specified, an omitted
argument is initialized to NIL. It is also possible to provide the name of a supplied-p variable that
can be used to determine if a call provided a value for the argument or if the initialization expression was
used. If specified, the supplied- p variable will be bound to T if a value was specified in the call and NIL
if the default value was used.

The &optional arguments are followed by the &rest argument. The &rest argument gets bound to the
remainder of the argument list after the required and &optional arguments have been removed.

XLISP: AN OBJECT-ORIENTED LISP Page 155

The &rest argument is followed by the &key arguments. When a keyword argument is passed to a
function, a pair of values appears in the argument list. The first expression in the pair should evaluate to a
keyword symbol (a symbol that begins with a ‘‘:’’). The value of the second expression is the value of
the keyword argument. Like &optional arguments, &key arguments can have initialization expressions
and supplied-p variables. In addition, it is possible to specify the keyword to be used in a function call. If
no keyword is specified, the keyword obtained by adding a ‘‘:’’ to the beginning of the keyword
argument symbol is used. In other words, if the keyword argument symbol is foo, the keyword will be
’:foo.

The &key arguments are followed by the &aux variables. These are local variables that are bound
during the evaluation of the function body. It is possible to have initialization expressions for the &aux
variables.

Here is the complete syntax for lambda lists:

(rarg...
[&optional [oarg | (oarg [init [svar]])]...]
[&rest rarg]
[&key
[karg | ([karg | (key karg)] [init [svar]])]...
&allow-other-keys]

[&aux
[aux | (aux [init])]...])

where:

rarg is a required argument symbol
oarg is an &optional argument symbol
rarg is the &rest argument symbol
karg is a &key argument symbol
key is a keyword symbol
aux is an auxiliary variable symbol
init is an initialization expression
svar is a supplied-p variable symbol

IV.11. Objects
Definitions:

• selector — a symbol used to select an appropriate method

• message — a selector and a list of actual arguments

• method — the code that implements a message
Since XLISP was created to provide a simple basis for experimenting with object-oriented programming,
one of the primitive data types included is object. In XLISP, an object consists of a data structure
containing a pointer to the object’s class as well as an array containing the values of the object’s instance
variables.

Officially, there is no way to see inside an object (look at the values of its instance variables). The only
way to communicate with an object is by sending it a message.

You can send a message to an object using the send function. This function takes the object as its first

Page 156 NYQUIST MANUAL

argument, the message selector as its second argument (which must be a symbol) and the message
arguments as its remaining arguments.

The send function determines the class of the receiving object and attempts to find a method
corresponding to the message selector in the set of messages defined for that class. If the message is not
found in the object’s class and the class has a super-class, the search continues by looking at the messages
defined for the super-class. This process continues from one super-class to the next until a method for the
message is found. If no method is found, an error occurs.

When a method is found, the evaluator binds the receiving object to the symbol self and evaluates the
method using the remaining elements of the original list as arguments to the method. These arguments
are always evaluated prior to being bound to their corresponding formal arguments. The result of
evaluating the method becomes the result of the expression.

Within the body of a method, a message can be sent to the current object by calling the (send self
...). The method lookup starts with the object’s class regardless of the class containing the current
method.

Sometimes it is desirable to invoke a general method in a superclass even when it is overridden by a
more specific method in a subclass. This can be accomplished by calling send-super, which begins
the method lookup in the superclass of the class defining the current method rather than in the class of the
current object.

The send-super function takes a selector as its first argument (which must be a symbol) and the
message arguments as its remaining arguments. Notice that send-super can only be sent from within a
method, and the target of the message is always the current object (self). (send-super ...) is
similar to (send self ...) except that method lookup begins in the superclass of the class
containing the current method rather than the class of the current object.

IV.12. The ‘‘Object’’ Class
Object — the top of the class hierarchy.

Messages:
:show — show an object’s instance variables.

returns — the object

:class — return the class of an object
returns — the class of the object

:isa(:isa) class — test if object inherits from class
returns — t if object is an instance of class or a subclass of class, otherwise nil

:isnew — the default object initialization routine
returns — the object

XLISP: AN OBJECT-ORIENTED LISP Page 157

IV.13. The ‘‘Class’’ Class
Class — class of all object classes (including itself)

Messages:
:new — create a new instance of a class

returns — the new class object

:isnew ivars [cvars [super]] — initialize a new class
ivars — the list of instance variable symbols
cvars — the list of class variable symbols
super — the superclass (default is object)
returns — the new class object

:answer msg fargs code — add a message to a class
msg — the message symbol
fargs — the formal argument list (lambda list)
code — a list of executable expressions
returns — the object

When a new instance of a class is created by sending the message :new to an existing class, the
message :isnew followed by whatever parameters were passed to the :new message is sent to the
newly created object.

When a new class is created by sending the :new message to the object Class, an optional parameter
may be specified indicating the superclass of the new class. If this parameter is omitted, the new class
will be a subclass of Object. A class inherits all instance variables, class variables, and methods from
its super-class.

IV.14. Profiling
The Xlisp 2.0 release has been extended with a profiling facility, which counts how many times and

where eval is executed. A separate count is maintained for each named function, closure, or macro, and
a count indicates an eval in the immediately (lexically) enclosing named function, closure, or macro.
Thus, the count gives an indication of the amount of time spent in a function, not counting nested function
calls. The list of all functions executed is maintained on the global *profile* variable. These
functions in turn have *profile* properties, which maintain the counts. The profile system merely
increments counters and puts symbols on the *profile* list. It is up to the user to initialize data and
gather results. Profiling is turned on or off with the profile function. Unfortunately, methods cannot
be profiled with this facility.

IV.15. Symbols
• self — the current object (within a method context)

• *obarray* — the object hash table

• *standard-input* — the standard input stream

• *standard-output* — the standard output stream

Page 158 NYQUIST MANUAL

• *error-output* — the error output stream

• *trace-output* — the trace output stream

• *debug-io* — the debug i/o stream

• *breakenable* — flag controlling entering break loop on errors

• *tracelist* — list of names of functions to trace

• *tracenable* — enable trace back printout on errors

• *tracelimit* — number of levels of trace back information

• *evalhook* — user substitute for the evaluator function

• *applyhook* — (not yet implemented)

• *readtable* — the current readtable

• *unbound* — indicator for unbound symbols

• *gc-flag* — controls the printing of gc messages

• *gc-hook* — function to call after garbage collection

• *integer-format* — format for printing integers (‘‘%d’’ or ‘‘%ld’’)

• *float-format* — format for printing floats (‘‘%g’’)

• *print-case* — symbol output case (:upcase or :downcase)

There are several symbols maintained by the read/eval/print loop. The symbols +, ++, and +++ are
bound to the most recent three input expressions. The symbols *, ** and *** are bound to the most
recent three results. The symbol - is bound to the expression currently being evaluated. It becomes the
value of + at the end of the evaluation.

IV.16. Evaluation Functions
(eval expr) — evaluate an xlisp expression

expr — the expression to be evaluated
returns — the result of evaluating the expression

(apply fun args) — apply a function to a list of arguments
fun — the function to apply (or function symbol)
args — the argument list
returns — the result of applying the function to the arguments

(funcall fun arg...) — call a function with arguments
fun — the function to call (or function symbol)
arg — arguments to pass to the function
returns — the result of calling the function with the arguments

(quote expr) — return an expression unevaluated
expr — the expression to be quoted (quoted)
returns — expr unevaluated

XLISP: AN OBJECT-ORIENTED LISP Page 159

(function expr) — get the functional interpretation
expr — the symbol or lambda expression (quoted)
returns — the functional interpretation

(backquote expr) — fill in a template
expr — the template
returns — a copy of the template with comma and comma-at
expressions expanded

(lambda args expr...) — make a function closure
args — formal argument list (lambda list) (quoted)
expr — expressions of the function body
returns — the function closure

(get-lambda-expression closure) — get the lambda expression
closure — the closure
returns — the original lambda expression

(macroexpand form) — recursively expand macro calls
form — the form to expand
returns — the macro expansion

(macroexpand-1 form) — expand a macro call
form — the macro call form
returns — the macro expansion

IV.17. Symbol Functions
(set sym expr) — set the value of a symbol

sym — the symbol being set
expr — the new value
returns — the new value

(setq [sym expr]...) — set the value of a symbol
sym — the symbol being set (quoted)
expr — the new value
returns — the new value

(psetq [sym expr]...) — parallel version of setq
sym — the symbol being set (quoted)
expr — the new value
returns — the new value

(setf [place expr]...) — set the value of a field
place — the field specifier (quoted):

sym — set value of a symbol

Page 160 NYQUIST MANUAL

(car expr) — set car of a cons node
(cdr expr) — set cdr of a cons node
(nth n expr) — set nth car of a list
(aref expr n) — set nth element of an array
(get sym prop) — set value of a property
(symbol-value sym) — set value of a symbol
(symbol-function sym) — set functional value of a symbol
(symbol-plist sym) — set property list of a symbol

expr — the new value
returns — the new value

(defun sym fargs expr...) — define a function (defmacro sym fargs expr...) — define a macro
sym — symbol being defined (quoted)
fargs — formal argument list (lambda list) (quoted)
expr — expressions constituting the body of the
function (quoted) returns — the function symbol

(gensym [tag]) — generate a symbol
tag — string or number
returns — the new symbol

(intern pname) — make an interned symbol
pname — the symbol’s print name string
returns — the new symbol

(make-symbol pname) — make an uninterned symbol
pname — the symbol’s print name string
returns — the new symbol

(symbol-name sym) — get the print name of a symbol
sym — the symbol
returns — the symbol’s print name

(symbol-value sym) — get the value of a symbol
sym — the symbol
returns — the symbol’s value

(symbol-function sym) — get the functional value of a symbol
sym — the symbol
returns — the symbol’s functional value

(symbol-plist sym) — get the property list of a symbol
sym — the symbol
returns — the symbol’s property list

(hash sym n) — compute the hash index for a symbol
sym — the symbol or string

XLISP: AN OBJECT-ORIENTED LISP Page 161

n — the table size (integer)
returns — the hash index (integer)

IV.18. Property List Functions
(get sym prop) — get the value of a property

sym — the symbol
prop — the property symbol
returns — the property value or nil

(putprop sym val prop) — put a property onto a property list
sym — the symbol
val — the property value
prop — the property symbol
returns — the property value

(remprop sym prop) — remove a property
sym — the symbol
prop — the property symbol
returns — nil

IV.19. Array Functions
(aref array n) — get the nth element of an array

array — the array
n — the array index (integer)
returns — the value of the array element

(make-array size) — make a new array
size — the size of the new array (integer)
returns — the new array

(vector expr...) — make an initialized vector
expr — the vector elements
returns — the new vector

IV.20. List Functions
(car expr) — return the car of a list node

expr — the list node
returns — the car of the list node

(cdr expr) — return the cdr of a list node
expr — the list node

Page 162 NYQUIST MANUAL

returns — the cdr of the list node

(cxxr expr) — all cxxr combinations

(cxxxr expr) — all cxxxr combinations

(cxxxxr expr) — all cxxxxr combinations

(first expr) — a synonym for car

(second expr) — a synonym for cadr

(third expr) — a synonym for caddr

(fourth expr) — a synonym for cadddr

(rest expr) — a synonym for cdr

(cons expr1 expr2) — construct a new list node
expr1 — the car of the new list node
expr2 — the cdr of the new list node
returns — the new list node

(list expr...) — create a list of values
expr — expressions to be combined into a list
returns — the new list

(append expr...) — append lists
expr — lists whose elements are to be appended
returns — the new list

(reverse expr) — reverse a list
expr — the list to reverse
returns — a new list in the reverse order

(last list) — return the last list node of a list
list — the list
returns — the last list node in the list

(member expr list &key :test :test-not) — find an expression in a list
expr — the expression to find
list — the list to search
:test — the test function (defaults to eql)
:test-not — the test function (sense inverted)
returns — the remainder of the list starting with the expression

XLISP: AN OBJECT-ORIENTED LISP Page 163

(assoc expr alist &key :test :test-not) — find an expression in an a-list
expr — the expression to find
alist — the association list
:test — the test function (defaults to eql)
:test-not — the test function (sense inverted)
returns — the alist entry or nil

(remove expr list &key :test :test-not) — remove elements from a list
expr — the element to remove
list — the list
:test — the test function (defaults to eql)
:test-not — the test function (sense inverted)
returns — copy of list with matching expressions removed

(remove-if test list) — remove elements that pass test
test — the test predicate
list — the list
returns — copy of list with matching elements removed

(remove-if-not test list) — remove elements that fail test
test — the test predicate
list — the list
returns — copy of list with non-matching elements removed

(length expr) — find the length of a list, vector or string
expr — the list, vector or string
returns — the length of the list, vector or string

(nth n list) — return the nth element of a list
n — the number of the element to return (zero origin)
list — the list
returns — the nth element or nil if the list isn’t that long

(nthcdr n list) — return the nth cdr of a list
n — the number of the element to return (zero origin)
list — the list
returns — the nth cdr or nil if the list isn’t that long

(mapc fcn list1 list...) — apply function to successive cars
fcn — the function or function name
listn — a list for each argument of the function
returns — the first list of arguments

(mapcar fcn list1 list...) — apply function to successive cars
fcn — the function or function name
listn — a list for each argument of the function
returns — a list of the values returned

Page 164 NYQUIST MANUAL

(mapl fcn list1 list...) — apply function to successive cdrs
fcn — the function or function name
listn — a list for each argument of the function
returns — the first list of arguments

(maplist fcn list1 list...) — apply function to successive cdrs
fcn — the function or function name
listn — a list for each argument of the function
returns — a list of the values returned

(subst to from expr &key :test :test-not) — substitute expressions
to — the new expression
from — the old expression
expr — the expression in which to do the substitutions
:test — the test function (defaults to eql)
:test-not — the test function (sense inverted)
returns — the expression with substitutions

(sublis alist expr &key :test :test-not) — substitute with an a-list
alist — the association list
expr — the expression in which to do the substitutions
:test — the test function (defaults to eql)
:test-not — the test function (sense inverted)
returns — the expression with substitutions

IV.21. Destructive List Functions
(rplaca list expr) — replace the car of a list node

list — the list node
expr — the new value for the car of the list node
returns — the list node after updating the car

(rplacd list expr) — replace the cdr of a list node
list — the list node
expr — the new value for the cdr of the list node
returns — the list node after updating the cdr

(nconc list...) — destructively concatenate lists
list — lists to concatenate
returns — the result of concatenating the lists

(delete expr &key :test :test-not) — delete elements from a list
expr — the element to delete
list — the list
:test — the test function (defaults to eql)

XLISP: AN OBJECT-ORIENTED LISP Page 165

:test-not — the test function (sense inverted)
returns — the list with the matching expressions deleted

(delete-if test list) — delete elements that pass test
test — the test predicate
list — the list
returns — the list with matching elements deleted

(delete-if-not test list) — delete elements that fail test
test — the test predicate
list — the list
returns — the list with non-matching elements deleted

(sort list test) — sort a list
list — the list to sort
test — the comparison function
returns — the sorted list

IV.22. Predicate Functions
(atom expr) — is this an atom?

expr — the expression to check
returns — t if the value is an atom, nil otherwise

(symbolp expr) — is this a symbol?
expr — the expression to check
returns — t if the expression is a symbol, nil otherwise

(numberp expr) — is this a number?
expr — the expression to check
returns — t if the expression is a number, nil otherwise

(null expr) — is this an empty list?
expr — the list to check
returns — t if the list is empty, nil otherwise

(not expr) — is this false?
expr — the expression to check
return — t if the value is nil, nil otherwise

(listp expr) — is this a list?
expr — the expression to check
returns — t if the value is a cons or nil, nil otherwise

(endp list) — is this the end of a list
list — the list

Page 166 NYQUIST MANUAL

returns — t if the value is nil, nil otherwise

(consp expr) — is this a non-empty list?
expr — the expression to check
returns — t if the value is a cons, nil otherwise

(integerp expr) — is this an integer?
expr — the expression to check
returns — t if the value is an integer, nil otherwise

(floatp expr) — is this a float?
expr — the expression to check
returns — t if the value is a float, nil otherwise

(stringp expr) — is this a string?
expr — the expression to check
returns — t if the value is a string, nil otherwise

(characterp expr) — is this a character?
expr — the expression to check
returns — t if the value is a character, nil otherwise

(arrayp expr) — is this an array?
expr — the expression to check
returns — t if the value is an array, nil otherwise

(streamp expr) — is this a stream?
expr — the expression to check
returns — t if the value is a stream, nil otherwise

(objectp expr) — is this an object?
expr — the expression to check
returns — t if the value is an object, nil otherwise

(filep expr)5 — is this a file?
expr — the expression to check
returns — t if the value is an object, nil otherwise

(boundp sym) — is a value bound to this symbol?
sym — the symbol
returns — t if a value is bound to the symbol, nil otherwise

(fboundp sym) — is a functional value bound to this symbol?
sym — the symbol

5This is not part of standard XLISP nor is it built-in. Nyquist defines it though.

XLISP: AN OBJECT-ORIENTED LISP Page 167

returns — t if a functional value is bound to the symbol,
nil otherwise

(minusp expr) — is this number negative?
expr — the number to test
returns — t if the number is negative, nil otherwise

(zerop expr) — is this number zero?
expr — the number to test
returns — t if the number is zero, nil otherwise

(plusp expr) — is this number positive?
expr — the number to test
returns — t if the number is positive, nil otherwise

(evenp expr) — is this integer even?
expr — the integer to test
returns — t if the integer is even, nil otherwise

(oddp expr) — is this integer odd?
expr — the integer to test
returns — t if the integer is odd, nil otherwise

(eq expr1 expr2) — are the expressions identical?
expr1 — the first expression
expr2 — the second expression
returns — t if they are equal, nil otherwise

(eql expr1 expr2) — are the expressions identical? (works with all numbers)
expr1 — the first expression
expr2 — the second expression
returns — t if they are equal, nil otherwise

(equal expr1 expr2) — are the expressions equal?
expr1 — the first expression
expr2 — the second expression
returns — t if they are equal, nil otherwise

IV.23. Control Constructs
(cond pair...) — evaluate conditionally

pair — pair consisting of:
(pred expr...)

where:
pred — is a predicate expression
expr — evaluated if the predicate is not nil

Page 168 NYQUIST MANUAL

returns — the value of the first expression whose predicate is not nil

(and expr...) — the logical and of a list of expressions
expr — the expressions to be anded
returns — nil if any expression evaluates to nil, otherwise the value of the last expression

(evaluation of expressions stops after the first expression that evaluates to nil)

(or expr...) — the logical or of a list of expressions
expr — the expressions to be ored
returns — nil if all expressions evaluate to nil, otherwise the value of the first non-nil

expression (evaluation of expressions stops after the first expression that does not
evaluate to nil)

(if texpr expr1 [expr2]) — evaluate expressions conditionally
texpr — the test expression
expr1 — the expression to be evaluated if texpr is non-nil
expr2 — the expression to be evaluated if texpr is nil
returns — the value of the selected expression

(when texpr expr...) — evaluate only when a condition is true
texpr — the test expression
expr — the expression(s) to be evaluated if texpr is non-nil
returns — the value of the last expression or nil

(unless texpr expr...) — evaluate only when a condition is false
texpr — the test expression
expr — the expression(s) to be evaluated if texpr is nil
returns — the value of the last expression or nil

(case expr case...) — select by case
expr — the selection expression
case — pair consisting of:

(value expr...)
where:

value — is a single expression or a list of expressions (unevaluated)
expr — are expressions to execute if the case matches

returns — the value of the last expression of the matching case

(let (binding...) expr...) — create local bindings (let* (binding...) expr...) — let with sequential binding
binding — the variable bindings each of which is either:

1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr is an initialization expression

expr — the expressions to be evaluated
returns — the value of the last expression

(flet (binding...) expr...) — create local functions (labels (binding...) expr...) — flet with recursive
functions (macrolet (binding...) expr...) — create local macros

XLISP: AN OBJECT-ORIENTED LISP Page 169

binding — the function bindings each of which is:
(sym fargs expr...)

where:
sym — the function/macro name
fargs — formal argument list (lambda list)
expr — expressions constituting the body of the function/macro

expr — the expressions to be evaluated
returns — the value of the last expression

(catch sym expr...) — evaluate expressions and catch throws
sym — the catch tag
expr — expressions to evaluate
returns — the value of the last expression the throw expression

(throw sym [expr]) — throw to a catch
sym — the catch tag
expr — the value for the catch to return (defaults to nil)
returns — never returns

(unwind-protect expr cexpr...) — protect evaluation of an expression
expr — the expression to protect
cexpr — the cleanup expressions
returns — the value of the expression
Note: unwind-protect guarantees to execute the cleanup expressions even if a non-local exit

terminates the evaluation of the protected expression

IV.24. Looping Constructs
(loop expr...) — basic looping form

expr — the body of the loop
returns — never returns (must use non-local exit)

(do (binding...) (texpr rexpr...) expr...) (do* (binding...) (texpr rexpr...) expr...)
binding — the variable bindings each of which is either:

1) a symbol (which is initialized to nil)
2) a list of the form: (sym init [step]) where:

sym — is the symbol to bind
init — is the initial value of the symbol
step — is a step expression

texpr — the termination test expression
rexpr — result expressions (the default is nil)
expr — the body of the loop (treated like an implicit prog)
returns — the value of the last result expression

(dolist (sym expr [rexpr]) expr...) — loop through a list
sym — the symbol to bind to each list element

Page 170 NYQUIST MANUAL

expr — the list expression
rexpr — the result expression (the default is nil)
expr — the body of the loop (treated like an implicit prog)

(dotimes (sym expr [rexpr]) expr...) — loop from zero to n-1
sym — the symbol to bind to each value from 0 to n-1
expr — the number of times to loop
rexpr — the result expression (the default is nil)
expr — the body of the loop (treated like an implicit prog)

IV.25. The Program Feature
(prog (binding...) expr...) — the program feature (prog* (binding...) expr...) — prog with sequential

binding
binding — the variable bindings each of which is either:

1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr is an initialization expression

expr — expressions to evaluate or tags (symbols)
returns — nil or the argument passed to the return function

(block name expr...) — named block
name — the block name (symbol)
expr — the block body
returns — the value of the last expression

(return [expr]) — cause a prog construct to return a value
expr — the value (defaults to nil)
returns — never returns

(return-from name [value]) — return from a named block
name — the block name (symbol)
value — the value to return (defaults to nil)
returns — never returns

(tagbody expr...) — block with labels
expr — expression(s) to evaluate or tags (symbols)
returns — nil

(go sym) — go to a tag within a tagbody or prog
sym — the tag (quoted)
returns — never returns

(progv slist vlist expr...) — dynamically bind symbols
slist — list of symbols
vlist — list of values to bind to the symbols
expr — expression(s) to evaluate

XLISP: AN OBJECT-ORIENTED LISP Page 171

returns — the value of the last expression

(prog1 expr1 expr...) — execute expressions sequentially
expr1 — the first expression to evaluate
expr — the remaining expressions to evaluate
returns — the value of the first expression

(prog2 expr1 expr2 expr...) — execute expressions sequentially
expr1 — the first expression to evaluate
expr2 — the second expression to evaluate
expr — the remaining expressions to evaluate
returns — the value of the second expression

(progn expr...) — execute expressions sequentially
expr — the expressions to evaluate
returns — the value of the last expression (or nil)

IV.26. Debugging and Error Handling
(trace sym) — add a function to the trace list

sym — the function to add (quoted)
returns — the trace list

(untrace sym) — remove a function from the trace list
sym — the function to remove (quoted)
returns — the trace list

(error emsg [arg]) — signal a non-correctable error
emsg — the error message string
arg — the argument expression (printed after the message)
returns — never returns

(cerror cmsg emsg [arg]) — signal a correctable error
cmsg — the continue message string
emsg — the error message string
arg — the argument expression (printed after the message)
returns — nil when continued from the break loop

(break [bmsg [arg]]) — enter a break loop
bmsg — the break message string (defaults to **break**)
arg — the argument expression (printed after the message)
returns — nil when continued from the break loop

(clean-up) — clean-up after an error
returns — never returns

Page 172 NYQUIST MANUAL

(top-level) — clean-up after an error and return to the top level
returns — never returns

(continue) — continue from a correctable error
returns — never returns

(errset expr [pflag]) — trap errors
expr — the expression to execute
pflag — flag to control printing of the error message
returns — the value of the last expression consed with nil
or nil on error

(baktrace [n]) — print n levels of trace back information
n — the number of levels (defaults to all levels)
returns — nil

(evalhook expr ehook ahook [env]) — evaluate with hooks
expr — the expression to evaluate
ehook — the value for *evalhook*
ahook — the value for *applyhook*
env — the environment (default is nil)
returns — the result of evaluating the expression

(profile flag)6 — turn profiling on or off.
flag — nil turns profiling off, otherwise on
returns — the previous state of profiling.

IV.27. Arithmetic Functions
(truncate expr) — truncates a floating point number to an integer

expr — the number
returns — the result of truncating the number

(float expr) — converts an integer to a floating point number
expr — the number
returns — the result of floating the integer

(+ expr...) — add a list of numbers
expr — the numbers
returns — the result of the addition

(- expr...) — subtract a list of numbers or negate a single number
expr — the numbers

6This is not a standard XLISP 2.0 function.

XLISP: AN OBJECT-ORIENTED LISP Page 173

returns — the result of the subtraction

(* expr...) — multiply a list of numbers
expr — the numbers
returns — the result of the multiplication

(/ expr...) — divide a list of numbers
expr — the numbers
returns — the result of the division

(1+ expr) — add one to a number
expr — the number
returns — the number plus one

(1- expr) — subtract one from a number
expr — the number
returns — the number minus one

(rem expr...) — remainder of a list of numbers
expr — the numbers
returns — the result of the remainder operation

(min expr...) — the smallest of a list of numbers
expr — the expressions to be checked
returns — the smallest number in the list

(max expr...) — the largest of a list of numbers
expr — the expressions to be checked
returns — the largest number in the list

(abs expr) — the absolute value of a number
expr — the number
returns — the absolute value of the number

(gcd n1 n2...) — compute the greatest common divisor
n1 — the first number (integer)
n2 — the second number(s) (integer)
returns — the greatest common divisor

(random n) — compute a random number between 0 and n-1 inclusive
n — the upper bound (integer)
returns — a random number

(rrandom) — compute a random real number between 0 and 1 inclusive
returns — a random floating point number

Page 174 NYQUIST MANUAL

(sin expr) — compute the sine of a number
expr — the floating point number
returns — the sine of the number

(cos expr) — compute the cosine of a number
expr — the floating point number
returns — the cosine of the number

(tan expr) — compute the tangent of a number
expr — the floating point number
returns — the tangent of the number

(atan expr [expr2])7 — compute the arctangent
expr — the value of x
expr2 — the value of y (default value is 1.0)
returns — the arctangent of x/y

(expt x-expr y-expr) — compute x to the y power
x-expr — the floating point number
y-expr — the floating point exponent
returns — x to the y power

(exp x-expr) — compute e to the x power
x-expr — the floating point number
returns — e to the x power

(sqrt expr) — compute the square root of a number
expr — the floating point number
returns — the square root of the number

(< n1 n2...) — test for less than
(<= n1 n2...) — test for less than or equal to
(= n1 n2...) — test for equal to
(/= n1 n2...) — test for not equal to
(>= n1 n2...) — test for greater than or equal to
(> n1 n2...) — test for greater than

n1 — the first number to compare
n2 — the second number to compare
returns — t if the results of comparing n1 with n2, n2 with n3, etc., are all true.

7This is not a standard XLISP 2.0 function.

XLISP: AN OBJECT-ORIENTED LISP Page 175

IV.28. Bitwise Logical Functions
(logand expr...) — the bitwise and of a list of numbers

expr — the numbers
returns — the result of the and operation

(logior expr...) — the bitwise inclusive or of a list of numbers
expr — the numbers
returns — the result of the inclusive or operation

(logxor expr...) — the bitwise exclusive or of a list of numbers
expr — the numbers
returns — the result of the exclusive or operation

(lognot expr) — the bitwise not of a number
expr — the number
returns — the bitwise inversion of number

IV.29. String Functions
(string expr) — make a string from an integer ascii value

expr — the integer
returns — a one character string

(string-search pat str &key :start :end)8 — search for pattern in string
pat — a string to search for
str — the string to be searched
:start — the starting offset in str
:end — the ending offset + 1
returns — index of pat in str or NIL if not found

(string-trim bag str) — trim both ends of a string
bag — a string containing characters to trim
str — the string to trim
returns — a trimed copy of the string

(string-left-trim bag str) — trim the left end of a string
bag — a string containing characters to trim
str — the string to trim
returns — a trimed copy of the string

(string-right-trim bag str) — trim the right end of a string
bag — a string containing characters to trim
str — the string to trim

8This is not a standard XLISP 2.0 function.

Page 176 NYQUIST MANUAL

returns — a trimed copy of the string

(string-upcase str &key :start :end) — convert to uppercase
str — the string
:start — the starting offset
:end — the ending offset + 1
returns — a converted copy of the string

(string-downcase str &key :start :end) — convert to lowercase
str — the string
:start — the starting offset
:end — the ending offset + 1
returns — a converted copy of the string

(nstring-upcase str &key :start :end) — convert to uppercase
str — the string
:start — the starting offset
:end — the ending offset + 1
returns — the converted string (not a copy)

(nstring-downcase str &key :start :end) — convert to lowercase
str — the string
:start — the starting offset
:end — the ending offset + 1
returns — the converted string (not a copy)

(strcat expr...) — concatenate strings
expr — the strings to concatenate
returns — the result of concatenating the strings

(subseq string start [end]) — extract a substring
string — the string
start — the starting position (zero origin)
end — the ending position + 1 (defaults to end)
returns — substring between start and end

(string< str1 str2 &key :start1 :end1 :start2 :end2) (string<= str1 str2 &key :start1 :end1 :start2 :end2)
(string= str1 str2 &key :start1 :end1 :start2 :end2)
(string/= str1 str2 &key :start1 :end1 :start2 :end2)
(string>= str1 str2 &key :start1 :end1 :start2 :end2)
(string> str1 str2 &key :start1 :end1 :start2 :end2)

str1 — the first string to compare
str2 — the second string to compare
:start1 — first substring starting offset
:end1 — first substring ending offset + 1
:start2 — second substring starting offset
:end2 — second substring ending offset + 1

XLISP: AN OBJECT-ORIENTED LISP Page 177

returns — t if predicate is true, nil otherwise
Note: case is significant with these comparison functions.

(string-lessp str1 str2 &key :start1 :end1 :start2 :end2)
(string-not-greaterp str1 str2 &key :start1 :end1 :start2 :end2)
(string-equalp str1 str2 &key :start1 :end1 :start2 :end2)
(string-not-equalp str1 str2 &key :start1 :end1 :start2 :end2)
(string-not-lessp str1 str2 &key :start1 :end1 :start2 :end2)
(string-greaterp str1 str2 &key :start1 :end1 :start2 :end2)

str1 — the first string to compare
str2 — the second string to compare
:start1 — first substring starting offset
:end1 — first substring ending offset + 1
:start2 — second substring starting offset
:end2 — second substring ending offset + 1
returns — t if predicate is true, nil otherwise
Note: case is not significant with these comparison functions.

IV.30. Character Functions
(char string index) — extract a character from a string

string — the string
index — the string index (zero relative)
returns — the ascii code of the character

(upper-case-p chr) — is this an upper case character?
chr — the character
returns — t if the character is upper case, nil otherwise

(lower-case-p chr) — is this a lower case character?
chr — the character
returns — t if the character is lower case, nil otherwise

(both-case-p chr) — is this an alphabetic (either case) character?
chr — the character
returns — t if the character is alphabetic, nil otherwise

(digit-char-p chr) — is this a digit character?
chr — the character
returns — the digit weight if character is a digit, nil otherwise

(char-code chr) — get the ascii code of a character
chr — the character
returns — the ascii character code (integer)

(code-char code) — get the character with a specified ascii code

Page 178 NYQUIST MANUAL

code — the ascii code (integer)
returns — the character with that code or nil

(char-upcase chr) — convert a character to upper case
chr — the character
returns — the upper case character

(char-downcase chr) — convert a character to lower case
chr — the character
returns — the lower case character

(digit-char n) — convert a digit weight to a digit
n — the digit weight (integer)
returns — the digit character or nil

(char-int chr) — convert a character to an integer
chr — the character
returns — the ascii character code

(int-char int) — convert an integer to a character
int — the ascii character code
returns — the character with that code

(char< chr1 chr2...)
(char<= chr1 chr2...)
(char= chr1 chr2...)
(char/= chr1 chr2...)
(char>= chr1 chr2...)
(char> chr1 chr2...)

chr1 — the first character to compare
chr2 — the second character(s) to compare
returns — t if predicate is true, nil otherwise
Note: case is significant with these comparison functions.

(char-lessp chr1 chr2...)
(char-not-greaterp chr1 chr2...)
(char-equalp chr1 chr2...)
(char-not-equalp chr1 chr2...)
(char-not-lessp chr1 chr2...)
(char-greaterp chr1 chr2...)

chr1 — the first string to compare
chr2 — the second string(s) to compare
returns — t if predicate is true, nil otherwise
Note: case is not significant with these comparison functions.

XLISP: AN OBJECT-ORIENTED LISP Page 179

IV.31. Input/Output Functions
(read [stream [eof [rflag]]]) — read an expression

stream — the input stream (default is standard input)
eof — the value to return on end of file (default is nil)
rflag — recursive read flag (default is nil)
returns — the expression read

(print expr [stream]) — print an expression on a new line
expr — the expression to be printed
stream — the output stream (default is standard output)
returns — the expression

(prin1 expr [stream]) — print an expression
expr — the expression to be printed
stream — the output stream (default is standard output)
returns — the expression

(princ expr [stream]) — print an expression without quoting
expr — the expressions to be printed
stream — the output stream (default is standard output)
returns — the expression

(pprint expr [stream]) — pretty print an expression
expr — the expressions to be printed
stream — the output stream (default is standard output)
returns — the expression

(terpri [stream]) — terminate the current print line
stream — the output stream (default is standard output)
returns — nil

(flatsize expr) — length of printed representation using prin1
expr — the expression
returns — the length

(flatc expr) — length of printed representation using princ
expr — the expression
returns — the length

IV.32. The Format Function
(format stream fmt arg...) — do formated output

stream — the output stream
fmt — the format string
arg — the format arguments
returns — output string if stream is nil, nil otherwise

Page 180 NYQUIST MANUAL

The format string can contain characters that should be copied directly to the output and formatting
directives. The formatting directives are:

~A — print next argument using princ
~S — print next argument using prin1
~% — start a new line
~~ — print a tilde character
~<newline> — ignore this one newline and white space on the
next line up to the first non-white-space character or newline. This
allows strings to continue across multiple lines

IV.33. File I/O Functions
Note that files are ordinarily opened as text. Binary files (such as standard midi files) must be opened

with open-binary on non-unix systems.
(open fname &key :direction) — open a file stream

fname — the file name string or symbol
:direction — :input or :output (default is :input)
returns — a stream

(open-binary fname &key :direction) — open a binary file stream
fname — the file name string or symbol
:direction — :input or :output (default is :input)
returns — a stream

(close stream) — close a file stream
stream — the stream
returns — nil

(setdir path)9 — set current directory
path — the path of the new directory
returns — the resulting full path, e.g. (setdir ".") gets the current working directory, or nil if an

error occurs

(listdir path)10 — get a directory listing
path — the path of the directory to be listed
returns — list of filenames in the directory

(get-temp-path)11 — get a path where a temporary file can be created. Under Windows, this is based on
environment variables. If XLISP is running as a sub-process to Java, the environment may not
exist, in which case the default result is the unfortunate choice c:\windows\.

9This is not a standard XLISP 2.0 function.

10This is not a standard XLISP 2.0 function.

11This is not a standard XLISP 2.0 function.

XLISP: AN OBJECT-ORIENTED LISP Page 181

returns — the resulting full path as a string

(read-char [stream]) — read a character from a stream
stream — the input stream (default is standard input)
returns — the character

(peek-char [flag [stream]]) — peek at the next character
flag — flag for skipping white space (default is nil)
stream — the input stream (default is standard input)
returns — the character (integer)

(write-char ch [stream]) — write a character to a stream
ch — the character to write
stream — the output stream (default is standard output)
returns — the character

(read-int [stream [length]]) — read a binary integer from a stream
stream — the input stream (default is standard input)
length — the length of the integer in bytes (default is 4)
returns — the integer
Note: Integers are assumed to be big-endian (high-order byte first) and signed, regardless of the

platform. To read little-endian format, use a negative number for the length, e.g. -4
indicates a 4-bytes, low-order byte first. The file should be opened in binary mode.

(write-int ch [stream [length]]) — write a binary integer to a stream
ch — the character to write
stream — the output stream (default is standard output)
length — the length of the integer in bytes (default is 4)
returns — the integer
Note: Integers are assumed to be big-endian (high-order byte first) and signed, regardless of the

platform. To write in little-endian format, use a negative number for the length, e.g. -4
indicates a 4-bytes, low-order byte first. The file should be opened in binary mode.

(read-float [stream [length]]) — read a binary floating-point number from a stream
stream — the input stream (default is standard input)
length — the length of the float in bytes (default is 4, legal values are -4, -8, 4, and 8)
returns — the integer
Note: Floats are assumed to be big-endian (high-order byte first) and signed, regardless of the

platform. To read little-endian format, use a negative number for the length, e.g. -4
indicates a 4-bytes, low-order byte first. The file should be opened in binary mode.

(write-float ch [stream [length]]) — write a binary floating-point number to a stream
ch — the character to write
stream — the output stream (default is standard output)
length — the length of the float in bytes (default is 4, legal values are -4, -8, 4, and 8)
returns — the integer
Note: Floats are assumed to be big-endian (high-order byte first) and signed, regardless of the

Page 182 NYQUIST MANUAL

platform. To write in little-endian format, use a negative number for the length, e.g. -4
indicates a 4-bytes, low-order byte first. The file should be opened in binary mode.

(read-line [stream]) — read a line from a stream
stream — the input stream (default is standard input)
returns — the string

(read-byte [stream]) — read a byte from a stream
stream — the input stream (default is standard input)
returns — the byte (integer)

(write-byte byte [stream]) — write a byte to a stream
byte — the byte to write (integer)
stream — the output stream (default is standard output)
returns — the byte (integer)

IV.34. String Stream Functions
These functions operate on unnamed streams. An unnamed output stream collects characters sent to it

when it is used as the destination of any output function. The functions
get-output-stream-string and string or a list of characters.

An unnamed input stream is setup with the make-string-input-stream function and returns
each character of the string when it is used as the source of any input function.

(make-string-input-stream str [start [end]])
str — the string
start — the starting offset
end — the ending offset + 1
returns — an unnamed stream that reads from the string

(make-string-output-stream)
returns — an unnamed output stream

(get-output-stream-string stream)
stream — the output stream
returns — the output so far as a string
Note: the output stream is emptied by this function

(get-output-stream-list stream)
stream — the output stream
returns — the output so far as a list
Note: the output stream is emptied by this function

XLISP: AN OBJECT-ORIENTED LISP Page 183

IV.35. System Functions
Note: the load function first tries to load a file from the current directory. A .lsp extension is added

if there is not already an alphanumeric extension following a period. If that fails, XLISP searches the
path, which is obtained from the XLISPPATH environment variable in Unix and
HKEY_LOCAL_MACHINE\SOFTWARE\CMU\Nyquist\XLISPPATH under Win32. (The Macintosh
version has no search path.)
(load fname &key :verbose :print) — load a source file

fname — the filename string or symbol
:verbose — the verbose flag (default is t)
:print — the print flag (default is nil)
returns — the filename

(save fname) — save workspace to a file
fname — the filename string or symbol
returns — t if workspace was written, nil otherwise

(restore fname) — restore workspace from a file
fname — the filename string or symbol
returns — nil on failure, otherwise never returns

(dribble [fname]) — create a file with a transcript of a session
fname — file name string or symbol (if missing, close current transcript)
returns — t if the transcript is opened, nil if it is closed

(gc) — force garbage collection
returns — nil

(expand num) — expand memory by adding segments
num — the number of segments to add
returns — the number of segments added

(alloc num) — change number of nodes to allocate in each segment
num — the number of nodes to allocate
returns — the old number of nodes to allocate

(info) — show information about memory usage.
returns — nil

(room) — show memory allocation statistics
returns — nil

(type-of expr) — returns the type of the expression
expr — the expression to return the type of
returns — nil if the value is nil otherwise one of the symbols:

SYMBOL — for symbols
OBJECT — for objects

Page 184 NYQUIST MANUAL

CONS — for conses
SUBR — for built-in functions
FSUBR — for special forms
CLOSURE — for defined functions
STRING — for strings
FIXNUM — for integers
FLONUM — for floating point numbers
CHARACTER — for characters
FILE-STREAM — for file pointers
UNNAMED-STREAM — for unnamed streams
ARRAY — for arrays

(peek addrs) — peek at a location in memory
addrs — the address to peek at (integer)
returns — the value at the specified address (integer)

(poke addrs value) — poke a value into memory
addrs — the address to poke (integer)
value — the value to poke into the address (integer)
returns — the value

(bigendiap) — is this a big-endian machine?
returns — T if this a big-endian architecture, storing the high-order byte of an integer at the

lowest byte address of the integer; otherwise, NIL.12

(address-of expr) — get the address of an xlisp node
expr — the node
returns — the address of the node (integer)

(exit) — exit xlisp
returns — never returns

(setup-console) — set default console attributes
returns — NIL
Note: Under Windows, Nyquist normally starts up in a medium-sized console window with black

text and a white background, with a window title of ‘‘Nyquist.’’ This is normally
accomplished by calling setup-console in system.lsp. In Nyquist, you can avoid
this behavior by setting *setup-console* to NIL in your init.lsp file. If
setup-console is not called, Nyquist uses standard input and output as is. This is
what you want if you are running Nyquist inside of emacs, for example.

(echoenabled flag) — turn console input echoing on or off
flag — T to enable echo, NIL to disable
returns — NIL

12This is not a standard XLISP 2.0 function.

XLISP: AN OBJECT-ORIENTED LISP Page 185

Note: This function is only implemented under Linux and Mac OS X. If Nyquist I/O is redirected
through pipes, the Windows version does not echo the input, but the Linux and Mac
versions do. You can turn off echoing with this function. Under windows it is defined to
do nothing.

IV.36. File I/O Functions

IV.36.1. Input from a File
To open a file for input, use the open function with the keyword argument :direction set to

:input. To open a file for output, use the open function with the keyword argument :direction
set to :output. The open function takes a single required argument which is the name of the file to be
opened. This name can be in the form of a string or a symbol. The open function returns an object of
type FILE-STREAM if it succeeds in opening the specified file. It returns the value nil if it fails. In
order to manipulate the file, it is necessary to save the value returned by the open function. This is
usually done by assigning it to a variable with the setq special form or by binding it using let or
let*. Here is an example:

(setq fp (open "init.lsp" :direction :input))

Evaluating this expression will result in the file init.lsp being opened. The file object that will be
returned by the open function will be assigned to the variable fp.

It is now possible to use the file for input. To read an expression from the file, just supply the value of
the fp variable as the optional stream argument to read.

(read fp)

Evaluating this expression will result in reading the first expression from the file init.lsp. The
expression will be returned as the result of the read function. More expressions can be read from the
file using further calls to the read function. When there are no more expressions to read, the read
function will return nil (or whatever value was supplied as the second argument to read).

Once you are done reading from the file, you should close it. To close the file, use the following
expression:

(close fp)

Evaluating this expression will cause the file to be closed.

IV.36.2. Output to a File
Writing to a file is pretty much the same as reading from one. You need to open the file first. This

time you should use the open function to indicate that you will do output to the file. For example:
(setq fp (open "test.dat" :direction :output))

Evaluating this expression will open the file test.dat for output. If the file already exists, its current
contents will be discarded. If it doesn’t already exist, it will be created. In any case, a FILE-STREAM
object will be returned by the OPEN function. This file object will be assigned to the fp variable.

It is now possible to write to this file by supplying the value of the fp variable as the optional stream
parameter in the print function.

(print "Hello there" fp)

Page 186 NYQUIST MANUAL

Evaluating this expression will result in the string ‘‘Hello there’’ being written to the file test.dat.
More data can be written to the file using the same technique.

Once you are done writing to the file, you should close it. Closing an output file is just like closing an
input file.

(close fp)

Evaluating this expression will close the output file and make it permanent.

IV.36.3. A Slightly More Complicated File Example
This example shows how to open a file, read each Lisp expression from the file and print it. It

demonstrates the use of files and the use of the optional stream argument to the read function.
(do* ((fp (open "test.dat" :direction :input))

(ex (read fp) (read fp)))
((null ex) nil)

(print ex))

XLISP: AN OBJECT-ORIENTED LISP Page 187

References

[Dannenberg 89] Dannenberg, R. B. and C. L. Fraley. Fugue: Composition and Sound Synthesis With
Lazy Evaluation and Behavioral Abstraction. In T. Wells and D. Butler (editor), Proceedings of the 1989
International Computer Music Conference, pages 76-79. International Computer Music Association, San
Francisco, 1989.

[Touretzky 84] Touretzky, David S. LISP: a gentle introduction to symbolic computation. Harper &
Row, New York, 1984.

Page 188 NYQUIST MANUAL

INDEX Page 189

Index
! 79
!Call 92
!Clock 89
!csec 87
!Def 90
!End 91
!msec 87
!Ramp 91
!Rate 84
!Seti 92
!Setv 92
!Tempo 83

(Adagio articulation) 82
#define’d macros 147

% (Adagio thirtysecond note) 81

* 173
A4-Hertz 40, 75
applyhook 158
autonorm 75
autonorm-max-samples 75
autonorm-previous-peak 75
autonorm-target 75
autonorm-type 75
autonormflag 75
breakenable 75, 151, 152, 158
control-srate 14, 56, 75
debug-io 158
default-control-srate 75
default-plot-file 62
default-sf-dir 58, 75
default-sf-format 75
default-sf-srate 60, 75
default-sound-srate 75
error-output 157
evalhook 158
file-separator 75
float-format 158
gc-flag 158
gc-hook 158
integer-format 158
loud 13
obarray 157
plotscript-file 62
print-case 158
readtable 153, 158
rslt 76, 147
sound-srate 14, 56, 76
soundenable 76
standard-input 157
standard-output 157
start 14
stop 14
sustain 13
table 75
trace-output 158
tracelimit 151, 158
tracelist 158
tracenable 76, 151, 158
transpose 13
unbound 158
warp 13, 56

+ 172

, (Adagio) 87

- 172

. (Adagio) 81

/ 173
/= 174

1+ 173
1- 173

:answer 157
:class 156
:isnew 156, 157
:new 157
:show 156

; (Adagio) 87

< 174
<= 174

= 174

> 174
>= 174

A440 40
Abs 173
Abs-env 56
Absolute value 53, 64
Access samples 37
Accidentals 80
Accumulate pattern 102
Adagio 79
Add offset to sound 64
Add to file samples 61
Add-action-to-workspace 120
Add-to-workspace 120
Additive synthesis, gongs 10
Address-of 184
Aftertouch 88
Agc 124
Algorithmic Composition 99
All pass filter 50
Alloc 183
Allpass2 52
Allpoles-from-lpc 94
Alpass filter 50
Amosc 46
Analog synthesizer 129
And 168
Append 162
Apply 158
Apply-banded-bass-boost 126
Apply-banded-delay 126
Apply-banded-treble-boost 126
Approximation 47
Arc sine distribution 108
Aref 161
Areson 51
Args 96
Arguments to a lisp function 96
Arithmetic Functions 172
Array from sound 38
Array Functions 161

Arrayp 166
Articulation 79, 82
Assoc 162
Asterisk 79
At 56
At Transformation 16
Atan 174
Atom 165
Atone 51
Attributes 79
Automatic gain control 124
Autonorm-off 27, 58, 59
Autonorm-on 27, 59
Average 64

Backquote 159
Backward 125
Baktrace 172
Banded bass boost 126
Banded delay 126
Banded treble boost 126
Bandfx.lsp 126
Bandpass filter 51
Bandpass2 52
Bartok 85
Behavioral abstraction 13
Behaviors 41
Bell sound 10, 11
Bernoulli distribution 109
Beta distribution 108
Big endian 184
Bigendiap 184
Bilateral exponential distribution 106
Binary files 180
Binomial distribution 109
Biquad 52
Biquad-m 52
Bitwise Logical Functions 175
Blank 79
Block 170
Both-case-p 177
Boundp 6, 166
Brass sound 11
Break 151, 171
Build-harmonic 6, 42
Buzz 46

Call command 92
Car 161
Case 80, 168
Catch 169
Cauchy distribution 106
Cdr 161
Cerror 171
Change directory 180
Char 177
Char-code 177
Char-downcase 178
Char-equalp 178
Char-greaterp 178
Char-int 178
Char-lessp 178
Char-not-equalp 178
Char-not-greaterp 178
Char-not-lessp 178
Char-upcase 178
Char/= 178

Page 190 NYQUIST MANUAL

Char< 178
Char<= 178
Char= 178
Char> 178
Char>= 178
Character Functions 177
Characterp 166
Chorus 65, 125
Clarinet 42
Clarinet sound 11
Clarinet-all 42
Clarinet-freq 42
Class 157
Class class 157
Clean-up 171
Clip 27, 53, 64
Clipping repair 124
Clock 89
Clock command 89
Close 180
Co-termination 63
Code-char 177
Comb filter 50
Combination 57
Command Loop 151
Commas 87
Comment 79
Compose 64
Compress 124
Compress-map 124
Compressor 39
Concatenate strings 176
Cond 167
Configure nyquist 1
Congen 50
Cons 162
Console, XLISP 184
Consp 166
Const 41
Constant function 41
Continue 172
Continuous-control-warp 56
Continuous-sound-warp 56
Contour generator 50
Control 41
Control change 88
Control characters, XLISP 151
Control Constructs 167
Control-srate-abs 56
Control-warp 43
Convert sound to array 38
Convolution 51
Copier pattern 102
Cos 174
Cue 41
Cue-file 41
Current-path 96
Cxxr 162
Cxxxr 162
Cxxxxr 162
Cycle pattern 100

Data Types 152
Db-average 124
Db-to-linear 39
DB0 9
DB1 9
DB10 9
Debugging 38, 62, 95, 171, 172
Decf 96

Decrement 96
Default durations 83
Default 84
Default sample rate 17
Default sound file directory 58
Default time 80
Defining Behaviors 16
Defmacro 160
Defun 160
Delay 51
Delay, variable 65
Delete 164
Delete-if 165
Delete-if-not 165
Demos, bell sound 10
Demos, distortion 52
Demos, drum sound 10
Demos, fft 77
Demos, FM 30
Demos, FM synthesis 11
Demos, formants 10
Demos, gong sound 10
Demos, lpc 93
Demos, midi 79
Demos, piano 123
Demos, pitch change 65
Demos, rhythmic pattern 11
Demos, ring modulation 8
Demos, sample-by-sample 11
Demos, scratch tutorial 30
Demos, Shepard tones 52
Demos, spectral analysis of a chord 10
Demos, voice synthesis 51
Demos, wind sound 31
Derivative 45
Describe 120
Destructive List Functions 164
Developing code 95
Diff 58
Difference 121
Difference of sounds 58
Digit-char 178
Digit-char-p 177
Directory listing 180
Directory, default sound file 58
Distortion tutorial 52
Distributions, probability 105
Division 54
Do 169
Do* 169
Dolby Pro-Logic 128
Dolby Surround 127
Dolist 169
Doppler effect 128
Dot 81
Dotimes 170
Dotted durations 9
Dribble 183
Drum sound 10
DSP in Lisp 11
Dtmf 127
Dtmf-tone 127
Dubugging 65
Duration 79, 81
Duration notation 9
Duration of another sound 63
DX7 82
Dynamic markings 82

Echo 51

Echoenabled 184
Effect, chorus 125
Effect, flange 125
Effect, reverberation 127
Effect, stereo 127
Effect, stereo pan 128
Effect, swap channels 128
Effect, widen 127
Effects, phaser 125
EIghth note 9, 81
Emacs, using Nyquist with 184
End command 91
Endian 184
Endless tones 10
Endp 165
Env 7, 41
Env-note 7
Envelope 7
Envelope follower 39, 65
Envelope generator 50
Envelopes 7
Environment 13
Eq 167
Eq-band 52
Eq-highshelf 52
Eq-lowshelf 52
Eql 167
Equal 167
Equalization 52, 125
Error 171
Error Handling 171
Errors iii
Errset 172
Estimate frequency 54
Eval 158
Eval pattern 103
Evalhook 172
Evaluation functions 158
Evaluator 152
Evenp 167
Event-dur 115
Event-end 116
Event-expression 115
Event-get-attr 116
Event-has-attr 116
Event-set-attr 116
Event-set-dur 115
Event-set-expression 115
Event-set-time 115
Event-time 115
Exclamation point 79
Exit 184
Exp 174
Exp-dec 42
Expand 183
Exponent 97
Exponential 53
Exponential distribution 105
Exponential envelope 42
Expr-get-attr 116
Expr-has-attr 116
Expr-set-attr 116
Expression pattern 103
Expt 174
Extending Xlisp 145
Extract 56

F (Adagio dynamic) 82
F (Adagio Flat) 80
Fast fourier transform tutorial 77

INDEX Page 191

Fboundp 166
Feedback-delay 51
Feel factor 119
FF (Adagio dynamic) 82
FFF (Adagio dynamic) 82
Fft 77
Fft tutorial 77
File I/O Functions 180, 185
Filep 166
Filter example 31
Find string 175
FIR filter 51
First 162
First derivative 45
Flange effect 125
Flat 80
Flatc 179
Flatsize 179
Flet 168
Float 172
Floatp 166
Flute sound 11
FM synthesis 30
Fmlfo 42
Fmosc 46
Follow 39
Follower 65
Force-srate 42
Format 179
Fourth 162
Frequency analysis 54
Frequency Modulation 28
Full path name 96
Funcall 158
Function 158
Fundamenal frequency estimation 54

Gain 124
Gate 39, 66
Gaussian distribution 108
Gc 183
Gcd 173
GEN05 49
Gensym 160
Geometric distribution 109
Get 161
Get char 181
Get-duration 40
Get-lambda-expression 159
Get-loud 40
Get-output-stream-list 182
Get-output-stream-string 182
Get-slider-value 63
Get-sustain 40
Get-temp-path 180
Get-transpose 40
Get-warp 40
Global Variables 75
Go 170
Gong sounds 10
Granular synthesis 126
Graphical equalizer 125
Grindef 96

H (Adagio Half note) 81
H 9
Half note 9, 81
Hash 160
Hd 9
Header file format 146

Heap pattern 102
High-pass filter 51
Highpass2 52
Highpass4 53
Highpass6 53
Highpass8 53
Hp 51
Ht 9
Hyperbolic cosine distribution 107
Hz-to-step 39
Hzosc 46

I (Adagio eIght note) 81
I 9
Id 9
If 168
Ifft 77
Incf 96
Increment 96
Info 183
Input from a File 185
Input/Output Functions 179
Installation 1
Int-char 178
Integerp 166
Integrate 45
Intern 160
Interpolate 121
Intersection 121
Intgen 145
Inverse 66
Inverse fft 77
It 9

Jitter 119

K (Adagio control) 88
Karplus-Strong 46
Karplus-Strong synthesis 11
Keyword parameters 113

Labels 168
Lambda 159
Lambda Lists 154
Last 162
Latency 41
Legato 56, 82
Length 163
Length pattern 103
Let 168
Let* 168
Lexical conventions 153
LF (Adagio dynamic) 82
Lf 9
LFF (Adagio dynamic) 82
Lff 9
LFFF (Adagio dynamic) 82
Lfff 9
Lfo 42
Libraries 123
Limit 53
Limiter 39
Line pattern 101
Linear distribution 105
Linear interpolation 121
Linear Prediction 93
Linear prediction tutorial 93
Linear-to-db 39
Lisp DSP 11
Lisp Include Files 148

List 162
List directory 180
List Functions 161
Listdir 180
Listing of lisp function 96
Listp 165
Little endian 184
LMF (Adagio dynamic) 82
Lmf 9
LMP (Adagio dynamic) 82
Lmp 9
Load 183
Local-to-global 40
Log function 40
Logand 175
Logical-stop 35
Logior 175
Logistic distribution 107
Lognot 175
Logorithm 53
Logxor 175
Loop 169
Looping Constructs 169
Loud 56
Loudness 79, 82
Low-frequency oscillator 42
Low-pass filter 51, 70
Lower-case-p 177
Lowpass2 52
Lowpass4 52
Lowpass6 53
Lowpass8 53
LP (Adagio dynamic) 82
Lp 9, 51
LPC 93
Lpc tutorial 93
Lpc-frame-err 93, 94
Lpc-frame-filter-coefs 93, 94
Lpc-frame-rms1 93, 94
Lpc-frame-rms2 93, 94
LPP (Adagio dynamic) 82
Lpp 9
LPPP (Adagio dynamic) 82
Lppp 9
Lpreson 94

M (Adagio control) 88
Macroexpand 159
Macroexpand-1 159
Macrolet 168
Make-accumulate 102
Make-array 161
Make-copier 102
Make-cycle 100
Make-eval 103
Make-heap 102
Make-length 103
Make-line 101
Make-lpanal-iterator 93
Make-lpc-file-iterator 93
Make-markov 104
Make-palindrome 101
Make-product 103
Make-random 101
Make-string-input-stream 182
Make-string-output-stream 182
Make-sum 103
Make-symbol 160
Make-window 104
Maketable 42

Page 192 NYQUIST MANUAL

Manipulation of scores 115
Mapc 163
Mapcar 163
Mapl 164
Maplist 164
Markov analysis 105
Markov pattern 104
Markov-create-rules 105
Max 173
Maximum 53, 173
Maximum amplitude 27, 66
Maximum of two sounds 66
Member 162
Memory usage 38
MF (Adagio dynamic) 82
Middle C 80
MIDI 79
MIDI Clock 89
MIDI file 119
MIDI program 83
Midi-show 127
Midi-show-file 127
Mikrokosmos 85
Min 173
Minimoog 129
Minimum 54, 173
Minusp 167
Mix 58
Mix to file 61
Mkwave 6
Modulation wheel 88
Modulo (rem) function 173
Mono to stereo 127
Moog 129
Moving average 64
MP (Adagio dynamic) 82
Mult 7, 43, 58
Multichannel Sounds 36
Multiple band effects 126
Multiple commands 87
Multiple tempi 89
Multiplication 67
Multiply signals 58

N (Adagio Next) 81
Natural 80
Natural log 53
Nband 125
Nband-range 125
Nconc 164
Nested Transformations 16
Next Adagio command 81
Next in pattern 99
Next pattern 99
Noise 54
Noise gate 66
Noise-gate 39
Normalization 27
Not 165
Not enough memory for normalization 27
Notch filter 51
Notch2 52
Note 6
Note list 58
Nstring-downcase 176
Nstring-upcase 176
Nth 163
Nthcdr 163
Null 165
Numberp 165

Ny:all 10

O (Adagio control) 88
Object 156
Object Class 156
Objectp 166
Objects 155
Octave specification 80
Oddp 167
Offset 119
Offset to a sound 64
Omissions iii
Oneshot 67
Open 180
Open sound control 40, 141
Or 168
Osc 5, 40, 45
Osc-note 54
Osc-pulse 46
Osc-saw 46
Osc-tri 46
Output samples to file 59
Output to a File 185
Overlap 56
Overwrite samples 61

P (Adagio dynamic) 82
P (Adagio Pitch) 80
Palindrome pattern 101
Pan 43, 127
Pan, stereo 128
Parameters, keyword 113
Params-scale 121
Params-transpose 121
Partial 46
Path, current 96
Pattern, eval 103
Pattern, length 103
Pattern, window 104
Pattern, accumulate 102
Pattern, copier 102
Pattern, cycle 100
Pattern, expression 103
Pattern, heap 102
Pattern, line 101
Pattern, markov 104
Pattern, palindrome 101
Pattern, product 103
Pattern, random 101
Pattern, sum 103
Patternp 121
Peak amplitude 27
Peak, maximum amplitude 66
Peek 184
Peek-char 181
Period estimation 54
Phaser 125
Physical model 11
Piano synthesizer 123
Piano synthesizer tutorial 123
Piano-midi 123
Piano-midi2file 123
Piano-note 123
Piano-note-2 123
Piece-wise 47
Piece-wise linear 67
Pitch 79, 80
Pitch bend 88
Pitch detection 54
Pitch notation 10

Pitch shifting 65
Pl-center 128
Pl-doppler 128
Pl-left 128
Pl-pan2d 128
Pl-position 128
Pl-right 128
Play 5, 58
Play in reverse 125
Play-file 26, 59
Pluck 46
Plucked string 46
Plusp 167
Poisson distribution 109
Poke 184
Polyrhythm 89
Pop 96
Portamento switch 88
Power 97
PP (Adagio dynamic) 82
PPP (Adagio dynamic) 82
Pprint 179
Predicate Functions 165
Preset 83
Prin1 179
Princ 179
Print 179
Print midi file 127
Probability distributions 105
Prod 43
Product pattern 103
Product 58
Profile 172
Profiling 157
Prog 170
Prog* 170
Prog1 171
Prog2 171
Progn 171
Program 88
Program change 82
Progv 170
Property List Functions 161
Psetq 159
Pulse oscillator 46
Pulse-width modulation 46
Push 96
Putprop 161
Pwe 49
Pwe-list 49
Pwer 49
Pwer-list 49
Pwev 49
Pwev-list 49
Pwevr 49
Pwevr-list 50
Pwl 48
Pwl-list 48
Pwlr 49
Pwlr-list 49
Pwlv 49
Pwlv-list 49
Pwlvr 49
Pwlvr-list 49

Q (Adagio Quarter note) 81
Q 9
Qd 9
Qt 9
Quantize 54

INDEX Page 193

Quarter note 9, 81
Quote 158

R (Adagio Rest) 82
Ramp 54
Random 96, 105, 173
Random pattern 101
Rate 80, 84
Read 179
Read directory 180
Read macros 154
Read samples 37
Read samples from file 60
Read samples in reverse 125
Read-byte 182
Read-char 181
Read-float 181
Read-int 181
Read-line 182
Readtables 153
Real-random 96
Recip 54
Reciprocal 54
Registry 2
Rem 173
Remainder 173
Remove 163
Remove-if 163
Remove-if-not 163
Remprop 161
Replace file samples 61
Resample 43
Resampling 42, 65
Rescaling 27
Resolution 87
Reson 51
Rest 54, 162
Restore 183
Rests 82
Return 170
Return-from 170
Reverb 127
Reverse 162
Reverse, sound 125
Ring modulation 8
Risset 10
Rms 54, 64
Room 183
Rplaca 164
Rplacd 164
Rrandom 173

S (Adagio Sharp) 80
S (Adagio Sixteenth note) 81
S 9
S-abs 53
S-add-to 61
S-exp 53
S-log 53
S-max 27, 53
S-min 27, 54
S-overwrite 61
S-plot 62
S-read 60
S-rest 54
S-reverse 125
S-save 59
S-sqrt 53
Sample interpolation 67
Sample rate, forcing 42

Sample rates 17
Sampler 47
Samples 35, 38
Samples, reading 37
Sampling rate 40
Save 183
Save samples to file 59
Save-lpc-file 93
Save-workspace 120
Saving Sound Files 26
Sawtooth oscillator 46
Sawtooth wave 6
Sax 43
Sax-all 43
Sax-freq 43
Scale 6, 44
Scale-db 44
Scale-srate 44
Scan directory 180
Score 58
Score manipulation 115
Score, musical 7
Score-adjacent-events 118
Score-append 117
Score-apply 118
Score-filter 117
Score-filter-length 118
Score-filter-overlap 118
Score-gen 112, 114
Score-get-begin 118
Score-get-end 118
Score-indexof 118
Score-last-indexof 119
Score-merge 117
Score-must-have-begin-end 118
Score-play 118
Score-print 118
Score-randomize-start 119
Score-read-smf 119
Score-repeat 118
Score-scale 117
Score-select 117
Score-set-begin 117
Score-set-end 118
Score-shift 116
Score-sort 116
Score-sorted 116
Score-stretch 116
Score-stretch-to-length 118
Score-sustain 117
Score-transpose 117
Score-voice 117
Score-write-smf 119
Scratch sound 30
Sd 9
Search path 2
Second 162
Sections, Adagio 86
Semicolon, Adagio 87
Seq 57
Seqrep 57
Sequences 6, 79
Sequence_example.htm 7
Sequential behavior 14
Set 159
Set intersection 121
Set union 121
Set-control-srate 17, 40
Set-difference 121
Set-logical-stop 58

Set-pitch-names 40
Set-sound-srate 17, 40
Setdir 180
Setf 159
Seti commnad 92
Setq 159
Setup nyquist 1
Setup-console 184
Setv command 92
Sf-info 61
Shape 51
Sharp 80
Shepard tones 10, 52
Shift-time 44
Show midi file 127
Show-lpc-data 93
Signal composition 64, 67
Signal multiplication 67
Signal-start 35
Signal-stop 35
Sim 6, 57
Simrep 58
Simultaneous Behavior 15
Sin 173
Sine 46
Siosc 47
Sixteenth note 9, 81
Sixtyfourth note 81
Slope 45
Smooth 45
Snd-abs 64
Snd-add 64
Snd-allpoles 94
Snd-alpass 68
Snd-alpasscv 68
Snd-alpassvv 68
Snd-amosc 71
Snd-areson 68
Snd-aresoncv 68
Snd-aresonvc 68
Snd-aresonvv 68
Snd-atone 69
Snd-atonev 69
Snd-avg 64
Snd-biquad 69
Snd-buzz 71
Snd-chase 69
Snd-clarinet 72
Snd-clarinet-all 72
Snd-clarinet-freq 72
Snd-clip 64
Snd-compose 64
Snd-congen 69
Snd-const 62
Snd-convolve 69
Snd-copy 65
Snd-coterm 63
Snd-delay 69
Snd-down 65
Snd-exp 65
Snd-extent 37
Snd-fetch 37
Snd-fetch-array 37
Snd-fft 77
Snd-flatten 37
Snd-fmosc 71
Snd-follow 65
Snd-from-array 36
Snd-fromarraystream 36
Snd-fromobject 37

Page 194 NYQUIST MANUAL

Snd-gate 66
Snd-ifft 77
Snd-inverse 66
Snd-length 37
Snd-log 66
Snd-lpanal 94
Snd-lpreson 94
Snd-max 66
Snd-maxsamp 37
Snd-maxv 66
Snd-multiseq 72
Snd-normalize 66
Snd-offset 64
Snd-oneshot 67
Snd-osc 71
Snd-overwrite 63
Snd-partial 71
Snd-play 37
Snd-pluck 71
Snd-print 38
Snd-print-tree 38, 62
Snd-prod 67
Snd-pwl 67
Snd-quantize 67
Snd-read 62
Snd-recip 67
Snd-resample 67
Snd-resamplev 67
Snd-reson 69
Snd-resoncv 70
Snd-resonvc 70
Snd-resonvv 70
Snd-samples 38
Snd-save 63
Snd-sax 72
Snd-sax-all 72
Snd-sax-freq 72
Snd-scale 67
Snd-seq 72
Snd-set-latency 41
Snd-set-logical-stop 38
Snd-shape 67
Snd-sine 71
Snd-siosc 71
Snd-slider-snd 64
Snd-sqrt 64
Snd-srate 38
Snd-sref 38
Snd-t0 38
Snd-tapf 65
Snd-tapv 65
Snd-time 38
Snd-tone 70
Snd-tonev 70
Snd-trigger 72
Snd-xform 67
Snd-yin 68
Snd-zero 63
Soften-clipping 124
Sort 165
Sound 41

accessing point 36
creating from array 36

Sound file directory default 58
Sound file i/o 26, 58
Sound file info 61
Sound from Lisp data 37
Sound-off 59
Sound-on 59
Sound-srate-abs 56

Sound-warp 44
Soundfilename 61
Soundp 38
Sounds 35
Sounds vs. Behaviors 15
Spatialization 127
Special command 80
Spectral interpolation 47
Speed-dial 127
Splines 47
Sqrt 174
Square oscillator 46
Square root 53, 64
Srate 35
Sref 36
Sref-inverse 36
St 9
Stacatto 56
Staccato 82
Stack trace 172
Standard MIDI File 119
Stats 38
Step-to-hz 40
Stereo 127
Stereo pan 128
Stereo panning 43
Stereo-chorus 125
Stereoize 127
Stk clarinet 42
Stk sax 43
Stochastic functions 105
Strcat 176
Streamp 166
Stretch 8, 56
Stretching Sampled Sounds 25
String 175
String Functions 175
String Stream Functions 182
String synthesis 46
String-downcase 176
String-equalp 177
String-left-trim 175
String-lessp 177
String-not-equalp 177
String-not-greaterp 177
String-not-lessp 177
String-right-trim 175
String-search 175
String-trim 175
String-upcase 176
String/= 176
String< 176
String<= 176
String= 176
String> 176
String>= 176
Stringp 166
Sublis 164
Subseq 176
Subset 121
Subsetp 121
Subst 164
Suggestions iii
Sum pattern 103
Sum 58
Surround Sound 128
Sustain 56
Sustain-abs 57
Swap channels 128
Symbol Functions 159

Symbol-function 160
Symbol-name 160
Symbol-plist 160
Symbol-value 160
Symbolp 165
Symbols 157
Synchronization 89
System Functions 183
SystemRoot 3

T (Adagio Triplet) 81
T 80
Table 51
Table memory 38
Tagbody 170
Tan 174
Tap 65
Tapped delay 53
Tapv 53
Temp file 180
Tempo 80, 83
Temporary files 180
Temporary sound files directory 58
Terpri 179
The Format Function 179
The Program Feature 170
Third 162
Thirtysecond note 81
Threshold 67
Throw 169
Time 79, 80, 83
Time Structure 57
Time units 87
Timed-seq 58
Tone 51
Top-level 171
Touch tone 127
Trace 171
Transformation environment 13
Transformations 13, 55
Transpose 57
Transpose-abs 57
Triangle oscillator 46
Triangle wave 6
Trigger 58
Trill 92
Triplet 81
Triplet durations 9
Truncate 172
Tuba 11
Tuning 40
Tutorial, FM 30
Type-of 183

U 81
Uniform random 96, 173
Union 121
Unless 168
Untrace 171
Unwind-protect 169
Upper-case-p 177

V (Adagio Voice) 83
Variable delay 53, 65
Variable-resample function 65
Vector 161
Velocity 82
Vinal scratch 30
Vocal sound 10
Voice 79, 83

INDEX Page 195

Voice synthesis 51
Volume 88

W (Adagio Whole note) 81
W 9
Warble 30
Warp 57
Warp-abs 57
Waveforms 6
Waveshaping 51
Wavetables 6
Wd 9
When 96, 168
While 96
Whole note 9, 81
Widen 127
Wind sound 31
Window initialization 184
Window pattern 104
Wind_tutorial.htm 31
Wood drum sound 11
Workspace 120
Write samples to file 59
Write-byte 182
Write-char 181
Write-float 181
Write-int 181
Wt 9

X (Adagio control) 88
XLISP Command Loop 151
XLISP Data Types 152
XLISP evaluator 152
XLISP Lexical Conventions 153
XLISPPATH 2
Xmusic 99

Y (Adagio control) 88
Yin 54

Z (Adagio program) 83, 88
Zerop 167

^ (Adagio sixtyfourth note) 81

~ (Adagio) 88

Page 196 NYQUIST MANUAL

TABLE OF CONTENTS Page i

Table of Contents
Preface iii
1. Introduction and Overview 1

1.1. Installation 1
1.1.1. Unix Installation 1
1.1.2. Win32 Installation 2

1.1.2.1. What if Nyquist functions are undefined? 3
1.1.2.2. SystemRoot 3

1.1.3. MacOS 9 Installation 4
1.1.4. MacOS X Installation 4

1.2. Helpful Hints 4
1.3. Examples 5

1.3.1. Waveforms 6
1.3.2. Wavetables 6
1.3.3. Sequences 6
1.3.4. Envelopes 7
1.3.5. Piece-wise Linear Functions 8

1.4. Predefined Constants 9
1.5. More Examples 10

2. Behavioral Abstraction 13
2.1. The Environment 13
2.2. Sequential Behavior 14
2.3. Simultaneous Behavior 15
2.4. Sounds vs. Behaviors 15
2.5. The At Transformation 16
2.6. Nested Transformations 16
2.7. Defining Behaviors 16
2.8. Sample Rates 17

3. Continuous Transformations and Time Warps 19
3.1. Simple Transformations 19
3.2. Time Warps 20
3.3. Abstract Time Warps 20
3.4. Nested Transformations 22

4. More Examples 25
4.1. Stretching Sampled Sounds 25
4.2. Saving Sound Files 26
4.3. Memory Space and Normalization 27
4.4. Frequency Modulation 28
4.5. Building a Wavetable 30
4.6. Filter Examples 30
4.7. DSP in Lisp 31

5. Nyquist Functions 35
5.1. Sounds 35

5.1.1. What is a Sound? 35
5.1.2. Multichannel Sounds 36
5.1.3. Accessing and Creating Sound 36
5.1.4. Miscellaneous Functions 39

5.2. Behaviors 41
5.2.1. Using Previously Created Sounds 41
5.2.2. Sound Synthesis 41

5.2.2.1. Oscillators 45
5.2.2.2. Piece-wise Approximations 47

Page ii NYQUIST MANUAL

5.2.2.3. Filter Behaviors 50
5.2.2.4. More Behaviors 53

5.3. Transformations 55
5.4. Combination and Time Structure 57
5.5. Sound File Input and Output 58
5.6. Low-level Functions 62

5.6.1. Creating Sounds 62
5.6.2. Signal Operations 64
5.6.3. Filters 68
5.6.4. Table-Lookup Oscillator Functions 70
5.6.5. Physical Model Functions 72
5.6.6. Sequence Support Functions 72

6. Nyquist Globals 75
7. Time/Frequency Transformation 77
8. MIDI, Adagio, and Sequences 79

8.1. Specifying Attributes 80
8.1.1. Time 80
8.1.2. Pitch 80
8.1.3. Duration 81
8.1.4. Next Time 81
8.1.5. Rest 82
8.1.6. Articulation 82
8.1.7. Loudness 82
8.1.8. Voice 83
8.1.9. Timbre (MIDI Program) 83
8.1.10. Tempo 83
8.1.11. Rate 84

8.2. Default Attributes 84
8.3. Examples 85
8.4. Advanced Features 87

8.4.1. Time Units and Resolution 87
8.4.2. Multiple Notes Per Line 87
8.4.3. Control Change Commands 88
8.4.4. Multiple Tempi 89
8.4.5. MIDI Synchronization 89
8.4.6. System Exclusive Messages 90
8.4.7. Control Ramps 91
8.4.8. The !End Command 91
8.4.9. Calling C Routines 92
8.4.10. Setting C Variables 92

9. Linear Prediction Analysis and Synthesis 93
9.1. LPC Classes and Functions 93
9.2. Low-level LPC Functions 94

10. Developing and Debugging in Nyquist 95
10.1. Debugging 95
10.2. Useful Functions 96

11. Xmusic and Algorithmic Composition 99
11.1. Xmusic Basics 99
11.2. Pattern Classes 100

11.2.1. cycle 100
11.2.2. line 101
11.2.3. random 101
11.2.4. palindrome 101

TABLE OF CONTENTS Page iii

11.2.5. heap 102
11.2.6. copier 102
11.2.7. accumulate 102
11.2.8. sum 103
11.2.9. product 103
11.2.10. eval 103
11.2.11. length 103
11.2.12. window 104
11.2.13. markov 104

11.3. Random Number Generators 105
11.4. Score Generation and Manipulation 110

11.4.1. Keyword Parameters 113
11.4.2. Using score-gen 114
11.4.3. Score Manipulation 115
11.4.4. Xmusic and Standard MIDI Files 119
11.4.5. Workspaces 120
11.4.6. Utility Functions 121

12. Nyquist Libraries 123
12.1. Piano Synthesizer 123
12.2. Dymanics Compression 123
12.3. Clipping Softener 124
12.4. Graphical Equalizer 125
12.5. Sound Reversal 125
12.6. Time Delay Functions 125
12.7. Multiple Band Effects 126
12.8. Granular Synthesis 126
12.9. MIDI Utilities 127
12.10. Reverberation 127
12.11. DTMF Encoding 127
12.12. Dolby Surround(R), Stereo and Spatialization Effects 127
12.13. Minimoog-inspired Synthesis 129

12.13.1. Oscillator Parameters 130
12.13.2. Noise Parameters 130
12.13.3. Filter Parameters 130
12.13.4. Amplitude Parameters 131
12.13.5. Other Parameters 131
12.13.6. Input Format 131
12.13.7. Sample Code/Sounds 132

Appendix I. Extending Nyquist 133
I.1. Translating Descriptions to C Code 133
I.2. Rebuilding Nyquist 133
I.3. Accessing the New Function 133
I.4. Why Translation? 134
I.5. Writing a .alg File 134
I.6. Attributes 135
I.7. Generated Names 139
I.8. Scalar Arguments 139

Appendix II. Open Sound Control and Nyquist 141
II.1. Sending Open Sound Control Messages 142
II.2. The ser-to-osc Program 142

Appendix III. Intgen 145
III.0.1. Extending Xlisp 145

III.1. Header file format 146
III.2. Using #define’d macros 147

Page iv NYQUIST MANUAL

III.3. Lisp Include Files 148
III.4. Example 148
III.5. More Details 148

Appendix IV. XLISP: An Object-oriented Lisp 149
IV.1. Introduction 150
IV.2. A Note From The Author 150
IV.3. XLISP Command Loop 151
IV.4. Special Characters 151
IV.5. Break Command Loop 151
IV.6. Data Types 152
IV.7. The Evaluator 152
IV.8. Lexical Conventions 153
IV.9. Readtables 153
IV.10. Lambda Lists 154
IV.11. Objects 155
IV.12. The ‘‘Object’’ Class 156
IV.13. The ‘‘Class’’ Class 157
IV.14. Profiling 157
IV.15. Symbols 157
IV.16. Evaluation Functions 158
IV.17. Symbol Functions 159
IV.18. Property List Functions 161
IV.19. Array Functions 161
IV.20. List Functions 161
IV.21. Destructive List Functions 164
IV.22. Predicate Functions 165
IV.23. Control Constructs 167
IV.24. Looping Constructs 169
IV.25. The Program Feature 170
IV.26. Debugging and Error Handling 171
IV.27. Arithmetic Functions 172
IV.28. Bitwise Logical Functions 175
IV.29. String Functions 175
IV.30. Character Functions 177
IV.31. Input/Output Functions 179
IV.32. The Format Function 179
IV.33. File I/O Functions 180
IV.34. String Stream Functions 182
IV.35. System Functions 183
IV.36. File I/O Functions 185

IV.36.1. Input from a File 185
IV.36.2. Output to a File 185
IV.36.3. A Slightly More Complicated File Example 186

Index 189

LIST OF FIGURES Page v

List of Figures
Figure 1: An envelope generated by the env function. 7
Figure 2: The result of (warp4), intended to map 4 seconds of score time into 4 seconds of real 21

time. The function extends beyond 4 seconds (the dashed lines) to make sure the function
is well-defined at location (4, 4). Nyquist sounds are ordinarily open on the right.

Figure 3: When (warp4) is applied to (tone-seq-2), the note onsets and durations are warped. 21
Figure 4: When (warp4) is applied to (tone-seq-3), the note onsets are warped, but not the 22

duration, which remains a constant 0.25 seconds. In the fast middle section, this causes
notes to overlap. Nyquist will sum (mix) them.

Figure 5: The shift-time function shifts a sound in time according to its shift argument. 44
Figure 6: Ramps generated by pwl and ramp functions. The pwl version ramps toward the 55

breakpoint (1, 1), but in order to ramp back to zero at breakpoint (1, 0), the function
never reaches an amplitude of 1. If used at the beginning of a seq construct, the next
sound will begin at time 1. The ramp version actually reaches breakpoint (1, 1); notice
that it is one sample longer than the pwl version. If used in a sequence, the next sound
after ramp would start at time 1 + P, where P is the sample period.

Figure 7: The Linear Distribution, g = 1. 106
Figure 8: The Exponential Distribution, delta = 1. 106
Figure 9: The Gamma Distribution, nu = 4. 107
Figure 10: The Bilateral Exponential Distribution. 107
Figure 11: The Cauchy Distribution, tau = 1. 108
Figure 12: The Hyperbolic Cosine Distribution. 108
Figure 13: The Logistic Distribution, alpha = 1, beta = 2. 109
Figure 14: The Arc Sine Distribution. 109
Figure 15: The Gauss-Laplace (Gaussian) Distribution, xmu = 0, sigma = 1. 110
Figure 16: The Beta Distribution, alpha = .5, beta = .25. 110
Figure 17: The Bernoulli Distribution, px1 = .75. 111
Figure 18: The Binomial Distribution, n = 5, p = .5. 111
Figure 19: The Geometric Distribution, p = .4. 112
Figure 20: The Poisson Distribution, delta = 3. 112
Figure 21: System diagram for Minimoog emulator. 129

